
CS1114 Assignment 4
out: March 12th, 2012

due: 5:00PM March 30th, 2012

1 Previously, on Assignment 3...

...you wrote functions to drive the robot based on the position of the lightstick in the webcam
image. Now, we’d also like the robot to respond to the orientation of the lightstick. In this
assignment, we will determine a simple orientation for an object by first finding a bounding
polygon (the convex hull), then choosing a major axis along the length of the object. Later,
we will apply this algorithm to a real-time camera feed to provide a throttle control to the
robots.

2 Convex Hull & Orientation

As defined in the lecture, a convex hull is the smallest convex polygon (see Fig. 1) containing
a set of points. A convex polygon is a polygon for which it is possible to draw a straight
line from any point in the polygon to any other point in the polygon without ever crossing
the boundary or coming out of the shape. Given a set of points P (e.g. the big red blob
you found using connected components in A3), your task is to implement an algorithm for
finding the convex hull. We first consider the Gift Wrapping algorithm:

GiftWrappingAlgorithm(P ):

1. Start with a point p1 ∈ P that is guaranteed to lie on the border of the hull (we chose
the bottom-most point in class, but you can choose any extreme point). Add p1 to the
hull.

2. Find the point p ∈ P that makes the largest “right-hand turn.” i.e., if pprev is the
previous point on the convex hull, and ℓ is the line between the two previous points
in the convex hull (or a horizontal line, in case the previous point is the bottom-most
point) then the p maximizes the angle θ between ℓ and the line through pprev and ℓ.
Add p to the hull.

3. Repeat step 2 until we get back to p1.

This algorithm marches around the convex hull in counter-clockwise order. Step 2 requires
finding the angle between two line segments—you will have to use the vector and trigonomet-
ric operators described in class to implement this (the acos Matlab function may be helpful
here).

The next algorithm to consider is quickhull, which, like quicksort, is a divide and conquer
algorithm. We have provided you with an implementation of quickhull—you will call this
function (with the same interface as your gift-wrapping algorithm code) in the next section
of this assignment.

1



b

b

b

b

b

b

b

bb

b

b

b

b

b

m
a
jo
r
a
x
is

Figure 1: A convex hull. The black points form the point set, and
the dotted red lines are the edges of the convex hull. The dotted
black line is the major axis.

Orientation. We define the orientation of a polygon (a convex polygon, in our case) by
defining a major axis. The major axis of a polygon is the pair of vertices that are the farthest
from each other (the length of this axis is the diameter of the polygon. To find these points,
find the distance between each pair of vertices and select the pair with the largest distance.

3 Running Time of Convex Hull

How long do these algorithms take to run? Your next task is to compare their runtimes on
various types of input. In class, we discussed how the runtime of the gift-wrapping algorithm
depends not only on the size of the input (n points, say), but also on the size of the output
(the number of points on the convex hull, h). To test this out, you will first write functions
to generate random points in various configurations. Then you will test your convex hull
algorithms on different random point configurations:

1. Random points inside of a square. The first configuration is random points (with
floating point coordinates) inside of the square with corners (1, 1), (1,−1), (−1,−1),
and (−1, 1). The points should be uniformly distributed inside of this square, meaning
that all points inside the square are equally likely to be generated. You may use the
built-in Matlab function rand(rows,cols), which generates a rows× cols matrix of
random numbers between 0 and 1.

2. Random points inside of a circle. The second configuration is random points inside
of the unit circle (the circle centered at the origin with radius = 1). Again, you should
sample points from a uniform distribution.

3. Random points on a circle. The third configuration is random points on the unit
circle (i.e., points with distance 1 from the origin). Again, you should sample points
from a uniform distribution. This means you must be careful how you generate the
points.

2



Once you have implemented the above, you will generate a plot of the runtime of the two
convex hull algorithm on point sets of different size and in different configurations. You
will generate three plots; the first two will contain three curves, one for each of the three
configurations. The first plot will plot the size of the convex hull vs. the size of the input
point set (for each of the three configurations). The second will plot the running time
of the gift-wrapping algorithm vs. the size of the input point set (for each of the three
configurations).

Finally, generate a third plot comparing the running time of gift-wrapping to quickhull using
the random points on a circle configuration.

4 Preprocessing a binary image for convex hull

To find a bounding polygon of the lightstick, we can apply the convex hull algorithms you
developed above to the big red blob you found in Assignment 3. However, it is somewhat
silly to find the convex hull of a dense blob in the image, because most pixels in the blob
with be in the interior, surrounded by other pixels. These pixels can’t possibly be part of the
convex hull—only pixels on the boundary of the blob may be on the convex hull (although
not all boundary pixels will be). What does it mean for a pixel to be on the boundary of
a blob? A boundary pixel is a pixel such that some of its neighbors are in the blob, and
some are not in the blob (here we mean 4-connected neighbors, i.e., north, east, south, and
west). Any blob pixel whose four neighbors are also blob pixels are not on the convex hull.
In fact, any blob pixel with three neighbors that are in the blob also can be excluded from
the convex hull. Thus, we can save a lot of time if we get rid of pixels with these properties.

You will solve this problem using a trick you recently learned: convolution. Your first
task is to come up with a convolution kernel (i.e., a filter) that counts, for each pixel in a
binary image, the number of (4-connected) neighboring 1’s. That is, when you convolve the
image with this kernel, every pixel will be replaced with the number of neighboring 1’s. For
instance, the output of your kernel on the binary image on the left should be the image on
the right:

0 0 0 1 0

0 1 1 1 0

1 1 1 1 0

0 1 1 0 0

0 0 1 0 0

output =

0 1 2 1 1

2 2 3 3 1

1 4 4 2 1

2 2 3 2 0

0 2 1 1 0

Once you have found the right filter, you can apply it to an image B using the built-in Matlab
convolution function conv2. The conv2 function takes in two matrices, and convolves the
first matrix with the second, returning the resulting convolved image. You may want to pass

3



in the string ’same’ as a third argument to conv2; otherwise, this function will return a
slightly larger image whose width and height are the sum of the width and height of the two
input matrices.

Now, only the pixels with value < 3 in the output convolved image can possibly be part of
the convex hull. Your next task is to use the find function, combined with matrix operations
such as <, to get the coordinates of these pixels. Note that you should also only pick out
pixels that are 1’s in the original input binary image (note that some 0 pixels in the input
now have non-zero values in the output; we don’t want to include such pixels, as only pixels
that were 1 to begin with can be part of the convex hull). To exclude the pixels that were
originally 0’s, you will use the logical operator ’&’. In Matlab, the ’&’ operator takes two
numbers a and b, and returns 1 if both a and b are non-zero, and 0 if both a and b are zero.
For instance:

>> 1 & 1

ans =

1

>> 1 & 0

ans =

0

>> 5 & 1

ans =

1

The ’&’ operator is also defined on two matrices A and B (of the same size), where it applies
the operator to each pair of corresponding elements of A and B.

You should combine all of the above into one line of Matlab code that takes a binary
image and returns the coordinates of all the pixels that meet the criteria above: less than
3 neighboring 1’s, and a 1 to begin with. You can declare the kernel on a separate line, if
necessary.1 This line will go into a function with the header:

function [bdry_rows, bdry_cols] = find_image_boundary(bimage)

For instance, if the input binary image shown above is stored in the matrix A, then a function
call to filter image convex hull(A) should return variables [bdry rows, bdry cols]

corresponding to the coordinates:

(1, 4), (2, 2), (3, 1), (3, 4), (4, 2), (5, 3)

1While in the past we have discouraged such one-liners that use Matlab functions, this exercise can give
you a sense of the power of Matlab.

4



(in these ordered pairs, the row comes first, followed by the column).

You will get one point of extra credit for coming up with a better way to filter pixels that
can’t possibly be part of the convex hull.

5 Task List

5.1 Functions to Write

We have provided template files for each of these functions, so go ahead and grab them from
~/cs1114/student_files/A4/ and copy them to your working directory to get started.

1. Write a function that implements the gift-wrapping algorithm, as described in Section
2 to find the shape of the points in the given binary image. Your function should be
named convex hull giftwrapping (see the file convex hull giftwrapping.m for the
function header). This function takes as input a list of rows and a list of columns
(the y− and x−coordinates of the points, respectively), and returns an array of indices
of the points on the convex hull. The points on your hull may be listed in either
clockwise or counterclockwise order, and may or may not contain colinear points. The
starting point should appear both at the beginning and the end of the list. We will be
providing a function for testing your convex hull code. You can also use the function
plotConvexHull(rows, cols, hullIndices) to generate a plot of a point set and
the polygon represented by hullIndices.

2. Write a function poly major axis that takes as input a list of rows and columns which
represent vertices of a polygon and returns a 2-by-2 matrices of the form [row1 col1;

row2 col2]; this matrix should contain the two points which form the major axis.
Given arrays rows and cols representing the point set, and an array hullIndices of
point indices representing the convex hull (e.g., the output from the convex hull giftwrapping

above), the Matlab expressions rows(hullIndices) and cols(hullIndices) select
the appropriate rows and columns for input to the poly major axis function.

3. Write a function major angle that accepts a 2-by-2 matrix [x1 y1; x2 y2] (i.e. the
result from poly axes student) and returns the angle of the major axis relative to
the vertical (see Figure 2).
Hint: this will require some trigonometry; you may find the atan2 function useful.

4. Write functions randPointsInSquare, randPointsInCircle, and randPointsOnCircle,
which take a number of points to generate n and return n random points with the ap-
propriate distribution.

5. Write a function plot convex hull performance that generates the plots described
in Section 3.

5



b

b

(x2, y2)

(x1, y1)

θ1

b

b

(x2, y2)

(x1, y1)

θ2

Figure 2: major angle should measure the angle of the major axis relative to
the vertical—in whatever direction will yield the smallest positive result; so,
in this example, θ1 and θ2 would both be positive.

6. Write a one-line function find image boundary that takes as input a binary image
bimage and returns arrays rows and cols representing the set of points on the bound-
ary of the binary image as defined in Section 4. This function should be no more than
one line (two, if you choose to create the filter matrix on a separate line), not including
comments or the function header.

7. Write a function lightstick orientation that takes as input a binary image bimage
and returns the orientation (angle relative to the vertical) of the lightstick. This
function should call many of the functions described above.

6


