
 !

CS 1114:
Data Structures – Implementation: part 1

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Linked lists – running time
!  We can insert an item (at the front) in

constant (O(1)) time
–  Just manipulating the pointers
– As long as we know where to allocate the cell
–  If we need to insert an item inside the list,

then we must first find the place to put it.

!  We can delete an element (at the front) in
constant time
–  If the element isn’t at the front, then we have

to find it … how long does that take?

2

Linked lists – running time

!  Finding the place to insert/delete …

!  Easier case:

– What about inserting / deleting from the end of
the list?

!  How can we fix this?

3

4

Doubly linked lists

8 4 1 3

3 1 4 8

Singly linked representation

Doubly linked representation

5

A doubly-linked list in memory

4 7 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

4 8

First element

Last element
Size of list

X X

Doubly-linked list insertion

6

Initial list

Insert a 5
at end

Insert an 8
at the start

0 0 0
1 2 3

X X X
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

1 2 3

5
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 8 X X X X
10 11 12 13

4 4 0 1 0

7 4 1 2 7 0 4

Memory allocation
!  When we need a new cell, how do we

know where to find it?
!  We’ll keep track of a “free pointer” to the

next unused cell after the list

7

5 8 2

1 2 3

0 8 7

4 5 6

4 4 0

7 8 9

First element

Last element
Size of list

X X

10 11 12

11

Next free cell

Doubly-linked list insertion

8

Insert a
9 at the

start

5 5 1
1 2 3

0 5 0
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

8
14

8 5 2
1 2 3

8 5 0
4 5 6

0 9 5
7 8 9

X X X X
10 11 12 13

11
14

Delete
the last
element

8 8 1
1 2 3

8 5 0
4 5 6

0 9 0
7 8 9

X X X X
10 11 12 13 14

9

Memory allocation

!  Current strategy: when we need more
storage, we just grab locations at the end

!  What can go wrong?

!  When we delete items from a linked list
we change pointers so that the items are
inaccessible
– But they still waste space!

Memory allocation
!  Strategy 1: Computer keep tracks of free

space at the end

!  Strategy 2: Computer keeps a linked list
of free storage blocks (“freelist”)
– For each block, stores the size and location
– When we ask for more space, the computer

finds a big enough block in the freelist
– What if it doesn’t find one?

10

Maintaining a freelist

11

7 4 2
1 2 3

7 5 0
4 5 6

0 9 4
7 8 9

X X X X
10 11 12 13

Delete
the last
element

7 7 1
1 2 3

X X X
4 5 6

0 9 0
7 8 9

X X X X
10 11 12 13

Start: 10
Free space: 999,990

Start: 10
Free space: 999,990

Start: 4
Free space: 3

Free list

Free list

12

Allocation issues

!  Surprisingly important question:
– Which block do you supply?
– The smallest one that the users request fits

into?
– A larger one, in case the user wants to grow

the array?

Memory deallocation
!  How do we give the computer back a

block we’re finished with?

!  Someone has to figure out that certain
values will never be used ever
(“garbage”), and should be put back on
the free list
–  If this is too conservative, your program will

use more and more memory (“memory leak”)
–  If it’s too aggressive, your program will crash

(“blue screen of death”)

13

Memory deallocation
!  Two basic options:

1. Manual storage reclamation
– Programmer has to explicitly free garbage
– Languages: C, C++, assembler

2. Automatic storage reclamation

– Computer will notice that you’re no longer
using cells, and recycle them for you

– Languages: Matlab, Java, C#, Scheme

14

