
 !

CS 1114:
Implementing Search

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Last time

!  Graph traversal

!  Two types of todo lists:
– Stacks " Depth-first search
– Queues " Breadth-first search

2

2

5

1

3

10

6 8

4
7

9
2

4

1

5

3

7 9

8
10

6

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)
!  While there is an uncoloured node r

–  Choose a new colour
–  Create an empty queue Q
–  Let r be the root node, colour it, and add it to Q
–  While Q is not empty

•  Dequeue a node v from Q
•  For each of v’s neighbors u
-  If u is not coloured, colour it and add it to Q

3

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)
!  While there is an uncoloured node r

–  Choose a new colour
–  Create an empty stack S
–  Let r be the root node, colour it, and push it on S
–  While S is not empty

•  Pop a node v from S
•  For each of v’s neighbors u
-  If u is not coloured, colour it and push it onto S

4

Queues and Stacks
!  Examples of Abstract Data Types (ADTs)
!  ADTs fulfill a contract:

– The contract tells you what the ADT can do,
and what the behavior is

– For instance, with a stack:
• We can push and pop
•  If we push X onto S and then pop S, we get

back X, and S is as before

!  Doesn’t tell you how it fulfills the contract
!  This is a really important technique!!!!

5

Implementing DFS

!  How can we implement a stack?
– Needs to support several operations:
– Push (add an element to the top)
– Pop (remove the element from the top)
–  IsEmpty

6

256

42

17

Implementing a stack
!  IsEmpty

function e = IsEmpty(S)
 e = (length(S) == 0);

!  Push (add an element to the top)
 function S = push(S, x)
 S = [S x] % appends x to the end of the array S

!  Pop (remove an element from the top)
function [S, x] = pop(S)
 n = length(S); x = S(n); S = S(1:n-1); % abbreviates S
 % but what happens if n = 0?

7

Implementing BFS

!  How can we implement a queue?
– Needs to support several operations:
– Enqueue (add an element to back)
– Dequeue (remove an element from front)
–  IsEmpty

!  Not quite as easy as a stack…

8

256

42

17

Implementing a queue: Take 1
!  First approach: use an array
!  Add (enqueue) new elements to the end of

the array
!  When removing an element (dequeue),

shift the entire array left one unit

9

Q = [];

Implementing a queue: Take 1
!  IsEmpty

function e = IsEmpty(Q)
 e = (length(S) == 0);

!  Enqueue (add an element)
function Q = enqueue(Q,x)
 Q = [Q x];

!  Dequeue (remove an element)
function [Q, x] = dequeue(Q)
 n = length(Q); x = Q(1);
 for i = 1:n-1
 Q(i) = Q(i+1); % everyone steps forward one step

10

But now imagine
them all sitting in
chairs in the queue!

What is the running time?
!  IsEmpty

!  Enqueue (add an element)

!  Dequeue (remove an element)

11

Efficiency

!  Ideally, all of the operations (push,
pop, enqueue, dequeue, IsEmpty)
run in constant (O(1)) time

!  To figure out running time, we
need a model of how the
computer’s memory works

12

13

Computers and arrays
!  Computer memory is a large array

–  We will call it M

!  In constant time, a computer can:

–  Read any element of M (random access)
–  Change any element of M to another element
–  Perform any simple arithmetic operation

!  This is more or less what the hardware manual
for an x86 describes

Computers and arrays
!  Arrays in Matlab are consecutive

subsequences of M

14

M …
A = zeros(8)

Memory manipulation
!  How long does it take to:

– Read A(8)?

– Set A(7) = A(8)?

– Copy all the elements of an array (of size n) A
to a new part of M?

– Shift all the elements of A one cell to the left?

15

Implementing a queue: Take 2
!  Second approach: use an array AND
!  Keep two pointers for the front and back

of the queue

!  Add new elements to the back of the array
!  Take old elements off the front of the

array

16

Q = zeros(1000000);
front = 1; back = 1;

front back

Implementing a queue: Take 2
!  IsEmpty

!  Enqueue (add an element)

!  Dequeue (remove an element)

17

18

Implementing a queue: Take 3

- Linked lists -

!  Alternative to an array

!  Every element (cell) has two parts:
1.  A value (as in an array)
2.  A link to the next cell

19

Linked lists

8 4 1 3

Values

Links

20

Linked lists as memory arrays

!  We’ll implement linked lists using M

!  A cell will be represented by a pair of
adjacent array entries

M …

21

A few details
!  I will draw odd numbered entries in blue

and even ones in red
– Odd entries are values

• Number interpreted as list elements
– Even ones are links

• Number interpreted as index of the next cell
• AKA location, address, or pointer

!  The first cell is M(1) and M(2) (for now)
!  The last cell has 0, i.e. pointer to M(0)

– Also called a “null pointer”

22

Example

8 4 1 3

8 5 1

1 2 3

7 4 3

4 5 6

3 0 X

7 8 9

8 3 4

1 2 3

5 1 7

4 5 6

3 0 X

7 8 9

23

Traversing a linked list

!  Start at the first cell, [M(1),M(2)]
!  Access the first value, M(1)
!  The next cell is at location c = M(2)
!  If c = 0, we’re done
!  Otherwise, access the next value, M(c)
!  The next cell is at location c = M(c+1)
!  Keep going until c = 0

Inserting an element – arrays
!  How can we insert an element x into an

array A?
!  Depends where it needs to go:

– End of the array:
A = [A x];

– Middle of the array (say, between elements A
(5) and A(6))?

– Beginning of the array?

24

25

Inserting an element – linked lists

!  Create a new cell and splice it into the list

!  Splicing depends on where the cell goes:
– How do we insert:

• At the end?
•  In the middle?
• At the beginning?

8 4 1 3

5
M(1)

26

Adding a header
!  We can represent the linked list just by

the initial cell, but this is problematic
– Problem with inserting at the beginning

!  Instead, we add a header – a few entries
that are not cells, but hold information
about the list
1. A pointer to the first element
2. A count of the number of elements

27

Example

8 4 1 3

4 5 1 9 8 3 3 0 X

8 5 4
1 2 3

7 1 9
4 5 6

3 0 X
7 8 9

4 3
10 11

1 2 3 4 5 6 7 8 9
4 7

10 11

28

Linked list insertion

Initial list

Insert a 5
at end

Insert an 8
after the 1

5 2 2
1 2 3

0 1 3
4 5 6

X X X
7 8 9

X X X X
10 11 12 13

5 3 2
1 2 3

7 1 3
4 5 6

5 0 X
7 8 9

X X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X
10 11 12 13

11 5 2
1 2 3

0 1 9
4 5 6

5 0 8
7 8 9

3 6 5 X
10 11 12 13

Insert a 6
at the start

First element
starts at 5 Size of list is 2

Linked list deletion
!  We can also delete cells

!  Simply update the header and change one
pointer (to skip over the deleted element)

!  Deleting things is the source of many bugs
in computer programs
– You need to make sure you delete something

once, and only once

29

30

Linked list deletion

Initial list

Delete the
last cell

Delete the 8

5 3 2
1 2 3

0 1 9
4 5 6

5 0 8
7 8 9

3 X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

5 2 2 0 1 3 5 0 8 3 X X X
10 11 12 13

Delete the
first cell

1 2 3 4 5 6 7 8 9

5 4 2 7 1 9 5 0 8 3 X X X
10 11 12 13

1 2 3 4 5 6 7 8 9

3 1 2 0 1 3 5 0 8 3 X X X
10 11 12 13

Linked lists – running time
!  We can insert an item (at the front) in

constant (O(1)) time
–  Just manipulating the pointers
– As long as we know where to allocate the cell
–  If we need to insert an item inside the list,

then we must first find the place to put it.

!  We can delete an element (at the front) in
constant time
–  If the element isn’t at the front, then we have

to find it … how long does that take?

31

Linked lists – running time

!  What about inserting / deleting from the
end of the list?

!  How long does it take to get there?

32

