CS 1114:
 Implementing Search

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Cornell University
Computer Science

Last time

- Graph traversal

- Two types of todo lists:
- Stacks \rightarrow Depth-first search
- Queues \rightarrow Breadth-first search

Basic algorithms

BREADTH-FIRST SEARCH (Graph G)

- While there is an uncoloured node \mathbf{r}
- Choose a new colour
- Create an empty queue \mathbf{Q}
- Let \mathbf{r} be the root node, colour it, and add it to \mathbf{Q}
- While \mathbf{Q} is not empty
- Dequeue a node \mathbf{v} from \mathbf{Q}
- For each of \mathbf{v} 's neighbors \mathbf{u}
- If \mathbf{u} is not coloured, colour it and add it to \mathbf{Q}

Basic algorithms

DEPTH-FIRST SEARCH (Graph G)

While there is an uncoloured node \mathbf{r}

- Choose a new colour
- Create an empty stack \mathbf{S}
- Let \mathbf{r} be the root node, colour it, and push it on \mathbf{S}
- While \mathbf{S} is not empty
- Pop a node \mathbf{v} from \mathbf{S}
- For each of \mathbf{v} 's neighbors \mathbf{u}
- If \mathbf{u} is not coloured, colour it and push it onto \mathbf{S}

Queues and Stacks

- Examples of Abstract Data Types (ADTs)
- ADTs fulfill a contract:
- The contract tells you what the ADT can do, and what the behavior is
- For instance, with a stack:
- We can push and pop
- If we push X onto S and then pop S, we get back X , and S is as before
- Doesn' t tell you how it fulfills the contract - This is a really important technique!!!!

Implementing DFS

- How can we implement a stack?
- Needs to support several operations:
- Push (add an element to the top)
- Pop (remove the element from the top)
- IsEmpty

Implementing a stack

- IsEmpty
function e = IsEmpty(S)

$$
\mathrm{e}=(\text { length }(\mathrm{S})==0) ;
$$

- Push (add an element to the top)
function $S=\operatorname{push}(S, x)$ $S=\left[\begin{array}{ll}S & x\end{array}\right] \quad \%$ appends x to the end of the array S
- Pop (remove an element from the top)
function $[S, x]=\operatorname{pop}(S)$
$\mathrm{n}=$ length(S); $\mathrm{x}=\mathrm{S}(\mathrm{n}) ; \mathrm{S}=\mathrm{S}(1: \mathrm{n}-1) ; \%$ abbreviates S \% but what happens if $\mathrm{n}=0$?

Implementing BFS

- How can we implement a queue?
- Needs to support several operations:
- Enqueue (add an element to back)
- Dequeue (remove an element from front)
- IsEmpty

Implementing a queue: Take 1

- First approach: use an array
- Add (enqueue) new elements to the end of the array
- When removing an element (dequeue), shift the entire array left one unit

$$
Q=[] ;
$$

Implementing a queue: Take 1

- IsEmpty
function e = IsEmpty (Q)

$$
\mathrm{e}=(\text { length }(\mathrm{S})==0)
$$

- Enqueue (add an element) function $\mathrm{Q}=$ enqueue (Q, x)

$$
\mathrm{Q}=\left[\begin{array}{lll}
\mathrm{Q} & \mathrm{x}
\end{array}\right] ;
$$

$Q(i)=Q(i+1) ; \%$ everyone steps forward one step

What is the running time?

- IsEmpty
- Enqueue (add an element)
- Dequeue (remove an element)

Efficiency

- Ideally, all of the operations (push, pop, enqueue, dequeue, IsEmpty) run in constant (O(1)) time
- To figure out running time, we need a model of how the computer's memory works

Computers and arrays

- Computer memory is a large array
- We will call it M
- In constant time, a computer can:
- Read any element of M (random access)
- Change any element of M to another element
- Perform any simple arithmetic operation
- This is more or less what the hardware manual for an x86 describes

Computers and arrays

- Arrays in Matlab are consecutive subsequences of M

Memory manipulation

- How long does it take to:
- Read A(8)?
- Set $A(7)=A(8)$?
- Copy all the elements of an array (of size n) A to a new part of M ?
- Shift all the elements of A one cell to the left?

Implementing a queue: Take 2

- Second approach: use an array AND
- Keep two pointers for the front and back of the queue

- Add new elements to the back of the array
- Take old elements off the front of the array

$$
\begin{aligned}
& Q=\text { zeros }(1000000) ; \\
& \text { front }=1 \text {; back }=1 \text {; }
\end{aligned}
$$

Implementing a queue: Take 2
 - IsEmpty

- Enqueue (add an element)
" Dequeue (remove an element)

Implementing a queue: Take 3
 - Linked lists -

- Alternative to an array
- Every element (cell) has two parts:

1. A value (as in an array)
2. A link to the next cell

Linked lists

Linked lists as memory arrays

M

- We' II implement linked lists using M
- A cell will be represented by a pair of adjacent array entries

A few details

- I will draw odd numbered entries in blue and even ones in red
- Odd entries are values
- Number interpreted as list elements
- Even ones are links
- Number interpreted as index of the next cell
- AKA location, address, or pointer
- The first cell is $M(1)$ and $M(2)$ (for now)
- The last cell has 0, i.e. pointer to M(0)
- Also called a "null pointer"

Example

Traversing a linked list

- Start at the first cell, [M(1) ,M(2)]
- Access the first value, m(1)
- The next cell is at location $c=m(2)$
- If c = 0, we' re done
- Otherwise, access the next value, m(c)
- The next cell is at location $\mathbf{c}=\mathbf{m}(\mathrm{c}+1)$
- Keep going until c = 0

Inserting an element - arrays

- How can we insert an element x into an array A?
- Depends where it needs to go:
- End of the array:

$$
A=\left[\begin{array}{ll}
A & x
\end{array}\right] ;
$$

- Middle of the array (say, between elements A (5) and $A(6))$?
- Beginning of the array?

Inserting an element - linked lists

- Create a new cell and splice it into the list

- Splicing depends on where the cell goes:
- How do we insert:
- At the end?
- In the middle?
- At the beginning?

Adding a header

- We can represent the linked list just by the initial cell, but this is problematic
- Problem with inserting at the beginning
- Instead, we add a header - a few entries that are not cells, but hold information about the list
1.A pointer to the first element
2.A count of the number of elements

Example

Linked list insertion

Initial list

1	2	3	4	5	6	7	8	9	10	11	12	13
5	2	2	0	1	3	X	X	X	X	X	X	X

First element

$$
\text { starts at } 5
$$

Insert a 5 at end

5	3	2	7	1	3	5	0	X	X	X	X	X

Linked list deletion

- We can also delete cells
- Simply update the header and change one pointer (to skip over the deleted element)
- Deleting things is the source of many bugs in computer programs
- You need to make sure you delete something once, and only once

Linked list deletion

Initial list

1	2	3	4	5	6	7	8	9	10	11	12	13

	1	2	3	4	4	5	6	7	8	,	10	11	12	13	
Delete the last cell	5	3	2	0	0	1	9	5	0	8	3	X	X	X	X

Delete the 8

1	2	3	4	5	6	7	8	9	10	11	12	13
5	$\mathbf{2}$	2	0	1	3	5	0	8	3	X	X	X

	1	2	3		4	5	6	7	8	9	10	11	12	13	
Delete the first cell	3	1	2		0	1	3	5	0	8	3	X	X	X	X

Linked lists - running time

- We can insert an item (at the front) in constant (O(1)) time
- Just manipulating the pointers
- As long as we know where to allocate the cell
- If we need to insert an item inside the list, then we must first find the place to put it.
- We can delete an element (at the front) in constant time
- If the element isn't at the front, then we have to find it ... how long does that take?

Linked lists - running time

- What about inserting / deleting from the end of the list?
- How long does it take to get there?

