
 !

CS 1114:
Graphs and Blobs

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

2

Some major graph problems
!  Graph colouring

– Ensuring that radio stations don’t clash
!  Graph connectivity

– How fragile is the internet?
!  Graph cycles

– Helping FedEx/UPS/DHL plan a route
!  Planarity testing

– Connecting computer chips on a motherboard
!  Graph isomorphism

–  Is a chemical structure already known?

3

!  Given a graph and a set of colours {1,…,k},
assign each vertex a colour

!  Adjacent vertices have different colours

Graph colouring problem

V1
V2

V3

V4

V5

V1

V3

V4

V5

V2

4

Radio frequencies via colouring
!  How can we assign frequencies to a set of radio

stations so that there are no clashes?
!  Make a graph where each station is a vertex

–  Put an edge between two stations that clash
•  I.e., if their signal areas overlap

–  Any colouring is a non-clashing assignment of frequencies
•  Can you prove this? What about vice-versa?

C1
C2

C3

C4

C5

Images as graphs

5

Images as graphs

6

Images as graphs

7

8

Graphs and paths
!  Can you get from vertex V to vertex W?

–  Is there a route from one city to another?

!  More precisely, is there a sequence of
vertices {V, V1, V2, … , Vk, W} such that
every adjacent pair has an edge between
them? (Sometimes we care about directed edges.)
– This is called a path
– A cycle (or loop) is a path from V to V
– A path is simple if no vertex appears twice

•  though sometimes we define simple loops

European rail links (simplified)

9

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

•  Can we get from London to Prague on the train?
•  How about London to Stockholm?

Oslo Stockholm

10

Graph connectivity
!  For any pair of nodes, is there a path

between them?
– Basic idea of the Internet: you can get from any

computer to any other computer
– This pair of nodes is called connected
– A graph is connected if all nodes are connected

!  Related question: remove an arbitrary node
(or edge), how connected is the graph?
–  Is the Internet intact if any 1 computer fails?
– Or any 1 edge between computers?

11
“Eastern Telegraph Co. and its General Connections” (1901)

12

13

Hamiltonian & Eulerian cycles

!  Two questions that are useful for problems
such as mailman delivery routes

!  Hamiltonian cycle:
• A cycle that visits each vertex exactly once

(except the start and end)
!  Eulerian cycle:

• A cycle that uses each edge exactly once

!  Sometimes we look for Hamiltonian or Eulerian
paths

Hamiltonian & Eulerian cycles

14

V5

V1

V2

V4 V3

V10

V6

V7

V9 V8

!  "" Is it easier to tell if a graph has a
Hamiltonian cycle or an Eulerian cycle?

visits vertices visits edges

15

Planarity testing
!  A graph is planar if you can draw it

without the edges crossing
–  It’s OK to move the edges or vertices around,

as long as edges connect the same vertices

V1
V2

V3

V4

V5

16

" Is this graph planar?

V1

V2

V3

V4

V5

V6

"" Can you prove it?

17

Four-colour theorem
!  Any planar graph can be coloured using no

more than 4 colours

“Small world” phenomenon
(Six degrees of separation)

!  How close together are nodes in a graph
(e.g., what’s the average number of hops
connecting pairs of nodes?)

18

!  Milgram’s small world experiment:
•  Send postcard to random person A in

Omaha; task is to get it to a random
person B in Boston

•  If A knows B, send directly
•  Otherwise, A sends to someone A knows

who is most likely to know B
•  People are separated by 5.5 links on

average

Graph of Flickr images ……

19

Flickr images of the Pantheon, Rome (built 126 AD)

Images are matched using visual features

Image graph of the Pantheon

20

21

Connected components
!  Even if all nodes are not connected, there

will be subsets that are all connected
– Connected components

– Component 1: { V1, V3, V5 }
– Component 2: { V2, V4 }

V5

V4
V1

V3

V2

Blobs are components!

22

23

Blobs are components!

A 0 0 0 0 0 0 0 B 0
0 0 0 0 0 0 0 0 C 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 D 0 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A C

B

D

F E
H G

24

!  For each vertex we visit, we colour its neighbours
and remember that we need to visit them at some
point (e.g., put them in a todo list):

–  While there are any uncoloured vertices, select one, adding

it to the (empty) todo list and colouring it uniquely
•  While the todo list is not empty

-  remove a vertex V from the todo list to visit
-  add the uncoloured neighbors of this V to the todo list and colour

them with the same colour
–  Repeat until all vertices are coloured

!  This is also called graph traversal

Finding components (blobs)

25

Coloring a component

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

26

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: A
Todo List: []

27

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: A
Todo List: [C] Done with A, choose

next from Todo List

28

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: C
Todo List: []

29

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: C
Todo List: [B, F, D]

30

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: B
Todo List: [F, D]

31

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 A 0 0 0 0 0
0 0 0 B C D 0 0 0 0
0 0 0 E F G 0 0 0 0
0 0 0 H I J 0 0 0 0
0 0 0 K L M 0 0 0 0
0 0 0 0 0 0 0 0 0 0

Current node: B
Todo List: [F, D, E]

32

Stacks and Queues
!  One way to implement the todo list is as a stack

–  LIFO: Last In First Out
–  The newest task is the one you’ll do next
–  Think of a pile of trays in a cafeteria

•  Trays at the bottom can stay there a while…

!  The alternative is a queue
–  FIFO: First In First Out
–  The oldest task is the one you’ll do next
–  Think of a line of (well-mannered) people

•  First come, first served

Stacks
!  Two operations:

!  Push: add something to the
top of the stack

!  Pop: remove the thing on
top of the stack

33

Queue

!  Two operations:
!  Enqueue: add something to the end of

the queue
!  Dequeue: remove something from the

front of the queue

34

Graph traversal

!  Suppose you’re in
a maze

!  What strategy can
you use to find the
exit?

35

Graph traversal

36

Paris

Berlin

London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Oslo Stockholm

37

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (stack)

Oslo Stockholm

38

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: London
Todo list: [Paris]

Oslo Stockholm

39

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: []

Oslo Stockholm

40

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo Stockholm

41

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin]

Oslo Stockholm

42

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (stack)

Current node: Rome
Todo list: [Frankfurt, Berlin, Naples]

Oslo Stockholm

43

2
Paris

Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Naples
Todo list: [Frankfurt, Berlin]

Oslo Stockholm

44

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt]

Oslo Stockholm

45

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt, Hamburg, Vienna]

Oslo Stockholm

46

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg]

Oslo Stockholm

47

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo Stockholm

48

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples

Warsaw

Hamburg

Graph traversal (stack)

Current node: Vienna
Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Oslo Stockholm

49

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna Prague

4
Naples 7

Warsaw

Hamburg

Graph traversal (stack)

Current node: Warsaw
Todo list: [Frankfurt, Hamburg, Prague]

Oslo Stockholm

50

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

Hamburg

Graph traversal (stack)

Current node: Prague
Todo list: [Frankfurt, Hamburg]

Oslo Stockholm

51

2
Paris

5
Berlin

1
London

3
Rome

Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Hamburg
Todo list: [Frankfurt]

Oslo Stockholm

52

2
Paris

5
Berlin

1
London

3
Rome

10
Frankfurt

6
Vienna

8
Prague

4
Naples 7

Warsaw

9 Hamburg

Graph traversal (stack)

Current node: Frankfurt
Todo list: []

Oslo Stockholm

Depth-first search (DFS)

!  Call the starting node the root
!  We traverse paths all the way until we get

to a dead-end, then backtrack (until we
find an unexplored path)

53

2

5

1

3

10

6 8

4
7

9

Another strategy

54

1.  Explore all the cities that are one hop
away from the root

2.  Explore all cities that are two hops away
from the root

3.  Explore all cities that are three hops
away from the root

 …

!  This corresponds to using a queue

55

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Current node: London
Todo list: []

Graph traversal (queue)

Oslo Stockholm

56

Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: London
Todo list: [Paris]

Oslo Stockholm

57

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: []

Oslo Stockholm

58

2
Paris

Berlin

1
London

Rome

Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Paris
Todo list: [Frankfurt, Berlin, Rome]

Oslo Stockholm

59

2
Paris

Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome]

Oslo Stockholm

60

2
Paris

Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Frankfurt
Todo list: [Berlin, Rome, Hamburg]

Oslo Stockholm

61

2
Paris

4
Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg]

Oslo Stockholm

62

2
Paris

4
Berlin

1
London

Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg, Vienna]

Oslo Stockholm

63

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna]

Oslo Stockholm

64

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

Hamburg

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna, Naples]

Oslo Stockholm

65

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Hamburg
Todo list: [Vienna, Naples]

Oslo Stockholm

66

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples]

Oslo Stockholm

67

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

Naples
Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Vienna
Todo list: [Naples, Prague, Warsaw]

Oslo Stockholm

68

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna Prague

8
Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Naples
Todo list: [Prague, Warsaw]

Oslo Stockholm

69

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna

9
Prague

8
Naples

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Prague
Todo list: [Warsaw]

Oslo Stockholm

70

2
Paris

4
Berlin

1
London

5
Rome

3
Frankfurt

7
Vienna

9
Prague

8
Naples 10

Warsaw

6 Hamburg

Graph traversal (queue)

Current node: Warsaw
Todo list: []

Oslo Stockholm

Breadth-first search (BFS)

!  We visit all the vertices at the same level
(same distance to the root) before moving
on to the next level

71

2

4

1

5

3

7 9

8
10

6

BFS vs. DFS

72

2

5

1

3

10

6 8

4
7

9 2

4

1

5

3

7 9

8
10

6

Breadth-first (queue) Depth-first (stack)

BFS vs. DFS

73

(tree = graph with no cycles)

