CS 1114: Graphs and Blobs

Prof. Graeme Bailey
 http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Some major graph problems

- Graph colouring
- Ensuring that radio stations don' t clash
- Graph connectivity
- How fragile is the internet?
- Graph cycles
- Helping FedEx/UPS/DHL plan a route
- Planarity testing
- Connecting computer chips on a motherboard
- Graph isomorphism
- Is a chemical structure already known?

Graph colouring problem

- Given a graph and a set of colours $\{1, \ldots, k\}$, assign each vertex a colour
- Adjacent vertices have different colours

Radio frequencies via colouring

- How can we assign frequencies to a set of radio stations so that there are no clashes?
- Make a graph where each station is a vertex
- Put an edge between two stations that clash
- I.e., if their signal areas overlap
- Any colouring is a non-clashing assignment of frequencies
- Can you prove this? What about vice-versa?

Images as graphs

Cornell University

Images as graphs

Images as graphs

Graphs and paths

- Can you get from vertex V to vertex W?
- Is there a route from one city to another?
- More precisely, is there a sequence of vertices $\left\{\mathrm{V}, \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}, \mathrm{W}\right\}$ such that every adjacent pair has an edge between them? (Sometimes we care about directed edges.)
- This is called a path
- A cycle (or loop) is a path from V to V
- A path is simple if no vertex appears twice
- though sometimes we define simple loops

European rail links (simplified)

London

- Can we get from London to Prague on the train?
- How about London to Stockholm?

Graph connectivity

- For any pair of nodes, is there a path between them?
- Basic idea of the Internet: you can get from any computer to any other computer
- This pair of nodes is called connected
- A graph is connected if all nodes are connected
- Related question: remove an arbitrary node (or edge), how connected is the graph?
- Is the Internet intact if any 1 computer fails?
- Or any 1 edge between computers?

"Eastern Telegraph Co. and its General Connections" (1901)

Hamiltonian \& Eulerian cycles

- Two questions that are useful for problems such as mailman delivery routes
- Hamiltonian cycle:
- A cycle that visits each vertex exactly once (except the start and end)
- Eulerian cycle:
- A cycle that uses each edge exactly once
- Sometimes we look for Hamiltonian or Eulerian paths

Cornell University

Hamiltonian \& Eulerian cycles

visits vertices

visits edges

- Is it easier to tell if a graph has a Hamiltonian cycle or an Eulerian cycle?

Planarity testing

- A graph is planar if you can draw it without the edges crossing
- It's OK to move the edges or vertices around, as long as edges connect the same vertices

- Is this graph planar?

- Can you prove it?

Four-colour theorem

- Any planar graph can be coloured using no more than 4 colours

Cornell University

"Small world" phenomenon (Six degrees of separation)

- How close together are nodes in a graph (e.g., what's the average number of hops connecting pairs of nodes?)

- Milgram' s small world experiment:
- Send postcard to random person A in Omaha; task is to get it to a random person B in Boston
- If A knows B, send directly
- Otherwise, A sends to someone A knows who is most likely to know B
- People are separated by 5.5 links on average

Graph of Flickr images

Flickr images of the Pantheon, Rome (built 126 AD)
Images are matched using visual features

Image graph of the Pantheon

Cornell University

Connected components

- Even if all nodes are not connected, there will be subsets that are all connected
- Connected components

- Component 1: \{ V1, V3, V5 \}
- Component 2: \{ V2, V4 \}

Blobs are components!

Blobs are components!

A	0	0	0	0	0	0	0	B	0
0	0	0	0	0	0	0	0	C	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	D	0	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Cornell University

Finding components (blobs)

- For each vertex we visit, we colour its neighbours and remember that we need to visit them at some point (e.g., put them in a todo list):
- While there are any uncoloured vertices, select one, adding it to the (empty) todo list and colouring it uniquely
- While the todo list is not empty
- remove a vertex V from the todo list to visit
- add the uncoloured neighbors of this V to the todo list and colour them with the same colour
- Repeat until all vertices are coloured
- This is also called graph traversal

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Coloring a component

Cornell University

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: A
Todo List: []

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: A
Todo List: [C] $\leftarrow \begin{aligned} & \text { Done with A, choose } \\ & \text { next from Todo List }\end{aligned}$

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: C
Todo List: []

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: C
Todo List: [B, F, D]

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: B
Todo List: [F, D]

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	A	0	0	0	0	0
0	0	0	B	C	D	0	0	0	0
0	0	0	E	F	G	0	0	0	0
0	0	0	H	I	J	0	0	0	0
0	0	0	K	L	M	0	0	0	0
0	0	0	0	0	0	0	0	0	0

Current node: B
Todo List: [F, D, E]

Stacks and Queues

- One way to implement the todo list is as a stack
- LIFO: Last In First Out
- The newest task is the one you'll do next
- Think of a pile of trays in a cafeteria
- Trays at the bottom can stay there a while...
- The alternative is a queue
- FIFO: First In First Out
- The oldest task is the one you'll do next
- Think of a line of (well-mannered) people
- First come, first served

Stacks

- Two operations:
- Push: add something to the top of the stack
- Pop: remove the thing on top of the stack

Queue

- Two operations:
- Enqueue: add something to the end of the queue
- Dequeue: remove something from the front of the queue

Graph traversal

Graph traversal

Graph traversal (stack)

Current node: London

Todo list: []

Cornell University

Graph traversal (stack)

Current node: London
 Todo list: [Paris]

Graph traversal (stack)

Current node: Paris

Todo list: []

Cornell University

Graph traversal (stack)

[^0]
Graph traversal (stack)

Current node: Rome

Todo list: [Frankfurt, Berlin]

Cornell University

Graph traversal (stack)

Current node: Rome
 Todo list: [Frankfurt, Berlin, Naples]

Graph traversal (stack)

London

Frankfurt

Current node: Naples

Todo list: [Frankfurt, Berlin]

Graph traversal (stack)

Current node: Berlin
Todo list: [Frankfurt]

Graph traversal (stack)

Current node: Berlin

Todo list: [Frankfurt, Hamburg, Vienna]

Cornell University

Graph traversal (stack)

Current node: Vienna
 Todo list: [Frankfurt, Hamburg]

Graph traversal (stack)

Current node: Vienna

Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

Graph traversal (stack)

[^1]
Graph traversal (stack)

Current node: Warsaw
Todo list: [Frankfurt, Hamburg, Prague]

Cornell University

Graph traversal (stack)

[^2]
Graph traversal (stack)

Current node: Hamburg

Todo list: [Frankfurt]

Graph traversal (stack)

Current node: Frankfurt

Todo list: []

Depth-first search (DFS)

- Call the starting node the root
- We traverse paths all the way until we get to a dead-end, then backtrack (until we find an unexplored path)

Cornell University

Another strategy

1. Explore all the cities that are one hop away from the root
2. Explore all cities that are two hops away from the root
3. Explore all cities that are three hops away from the root

- This corresponds to using a queue

Graph traversal (queue)

Current node: London

Todo list: []

Cornell University

Graph traversal (queue)

Current node: London
 Todo list: [Paris]

Graph traversal (queue)

Current node: Paris

Todo list: []

Cornell University

Graph traversal (queue)

[^3]
Graph traversal (queue)

Current node: Frankfurt

Todo list: [Berlin, Rome]

Cornell University

Graph traversal (queue)

Current node: Frankfurt
 Todo list: [Berlin, Rome, Hamburg]

Graph traversal (queue)

Current node: Berlin

Todo list: [Rome, Hamburg]

Graph traversal (queue)

Current node: Berlin
Todo list: [Rome, Hamburg, Vienna]

Graph traversal (queue)

Current node: Rome

Todo list: [Hamburg, Vienna]

Graph traversal (queue)

Current node: Rome
Todo list: [Hamburg, Vienna, Naples]

Graph traversal (queue)

Current node: Hamburg

Todo list: [Vienna, Naples]

Graph traversal (queue)

Current node: Vienna

Todo list: [Naples]

Graph traversal (queue)

Current node: Vienna

Todo list: [Naples, Prague, Warsaw]

Graph traversal (queue)

Current node: Naples
 Todo list: [Prague, Warsaw]

Graph traversal (queue)

Current node: Prague

Todo list: [Warsaw]

Graph traversal (queue)

Current node: Warsaw
Todo list: []

Breadth-first search (BFS)

- We visit all the vertices at the same level (same distance to the root) before moving on to the next level

BFS vs. DFS

Breadth-first (queue)

Depth-first (stack)

BFS vs. DFS

(tree $=$ graph with no cycles)

[^0]: Current node: Paris
 Todo list: [Frankfurt, Berlin, Rome]

[^1]: Current node: Vienna
 Todo list: [Frankfurt, Hamburg, Prague, Warsaw]

[^2]: Current node: Prague
 Todo list: [Frankfurt, Hamburg]

[^3]: Current node: Paris
 Todo list: [Frankfurt, Berlin, Rome]

