### CS 1114: Graphs and Blobs

#### **Prof. Graeme Bailey**

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)



Cornell University Computer Science

# Some major graph problems

- Graph colouring
  - Ensuring that radio stations don't clash
- Graph connectivity
  - How fragile is the internet?
- Graph cycles
  - Helping FedEx/UPS/DHL plan a route
- Planarity testing
  - Connecting computer chips on a motherboard
- Graph isomorphism
  - Is a chemical structure already known?

## **Graph colouring problem**

- Given a graph and a set of colours {1,...,k}, assign each vertex a colour
- Adjacent vertices have different colours



#### Cornell University

### **Radio frequencies via colouring**

- How can we assign frequencies to a set of radio stations so that there are no clashes?
- Make a graph where each station is a vertex
  - Put an edge between two stations that clash
    - I.e., if their signal areas overlap
  - Any colouring is a non-clashing assignment of frequencies
    - Can you prove this? What about vice-versa?





### **Images as graphs**





Cornell University

5

#### **Images as graphs**





### **Images as graphs**





Cornell University

### **Graphs and paths**

- Can you get from vertex V to vertex W?
  Is there a route from one city to another?
- More precisely, is there a sequence of vertices {V, V<sub>1</sub>, V<sub>2</sub>, ..., V<sub>k</sub>, W} such that every adjacent pair has an edge between them? (Sometimes we care about directed edges.)
  - This is called a path
  - A cycle (or loop) is a path from V to V
  - A path is **simple** if no vertex appears twice
    - though sometimes we define simple loops



# European rail links (simplified)



- Can we get from London to Prague on the train?
- How about London to Stockholm?

Cornell University

### **Graph connectivity**

- For any pair of nodes, is there a path between them?
  - Basic idea of the Internet: you can get from any computer to any other computer
  - This pair of nodes is called *connected*
  - A graph is connected if all nodes are connected
- Related question: remove an arbitrary node (or edge), how connected is the graph?
  - Is the Internet intact if any 1 computer fails?
  - Or any 1 edge between computers?





## Hamiltonian & Eulerian cycles

- Two questions that are useful for problems such as mailman delivery routes
  - Hamiltonian cycle:
    - A cycle that visits each vertex exactly once (except the start and end)
  - Eulerian cycle:
    - A cycle that uses each edge exactly once
  - Sometimes we look for Hamiltonian or Eulerian paths

Cornell University

### Hamiltonian & Eulerian cycles





## **Planarity testing**

- A graph is planar if you can draw it without the edges crossing
  - It's OK to move the edges or vertices around, as long as edges connect the same vertices





### • Is this graph planar?







### **Four-colour theorem**

 Any planar graph can be coloured using no more than 4 colours





Cornell University

### "Small world" phenomenon (Six degrees of separation)

 How close together are nodes in a graph (e.g., what's the average number of hops connecting pairs of nodes?)



- Milgram's small world experiment:
  - Send postcard to random person A in Omaha; task is to get it to a random person B in Boston
  - If A knows B, send directly
  - Otherwise, A sends to someone A knows who is most likely to know B
  - People are separated by 5.5 links on average



### Graph of Flickr images .....



Flickr images of the Pantheon, Rome (built 126 AD) Images are matched using visual features





Cornell University

### **Image graph of the Pantheon**





### **Connected components**

- Even if all nodes are not connected, there will be subsets that are all connected
  - Connected components



- Component 1: { V1, V3, V5 }
- Component 2: { V2, V4 }

Cornell University

#### **Blobs are components!**





### **Blobs are components!**



Cornell University

23

## Finding components (blobs)

- For each vertex we visit, we colour its neighbours and remember that we need to visit them at some point (e.g., put them in a *todo* list):
  - While there are any uncoloured vertices, select one, adding it to the (empty) todo list and colouring it uniquely
    - While the *todo* list is not empty
      - remove a vertex V from the todo list to visit
      - add the *uncoloured* neighbors of this V to the *todo* list and colour them with the same colour
  - Repeat until all vertices are coloured
- This is also called graph traversal

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

#### **Coloring a component**

Cornell University

翩)

| 100000010000000010000000001000000000000000000000000000000A000000000BCD0000                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 00000010000000000000000000000000000000000000000A0000000000BCD00000                                                                                                                                                                          |
| 0   0   0   0   0   0   0   0   0     0   0   0   0   0   0   0   0   0   0     0   0   0   0   0   0   0   0   0   0     0   0   0   0   A   0   0   0   0   0     0   0   0   A   0   0   0   0   0     0   0   0   A   0   0   0   0   0 |
| 0   0   0   0   0   0   0   0     0   0   0   0   A   0   0   0   0   0     0   0   0   B   C   D   0   0   0   0   0                                                                                                                       |
| 0   0   0   A   0   0   0   0   0     0   0   0   B   C   D   0   0   0   0                                                                                                                                                                 |
| 0 0 0 B C D 0 0 0 0                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                             |
| 0 0 0 E F G 0 0 0 0                                                                                                                                                                                                                         |
| 0 0 0 H I J 0 0 0 0                                                                                                                                                                                                                         |
| 0 0 0 K L M 0 0 0 0                                                                                                                                                                                                                         |
| 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                       |

Current node: A Todo List: []

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | Α | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | В | С | D | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | Е | F | G | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | Н | Ι | J | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | K | L | Μ | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Current node: A

Cornell University

| 1   0   0   0   0   0   0     0   0   0   0   0   0   0   0 | 1 | $\cap$ |
|-------------------------------------------------------------|---|--------|
| 0 0 0 0 0 0 0 0                                             |   | U      |
|                                                             | 1 | 0      |
| 0 0 0 0 0 0 0 0                                             | 0 | 0      |
| 0 0 0 0 0 0 0 0                                             | 0 | 0      |
| 0 0 0 0 A 0 0 0                                             | 0 | 0      |
| 0 0 0 B <b>C</b> D 0 0                                      | 0 | 0      |
| 0 0 0 E F G 0 0                                             | 0 | 0      |
| 0 0 0 H I J 0 0                                             | 0 | 0      |
| 0 0 0 K L M 0 0                                             | 0 | 0      |
| 0 0 0 0 0 0 0 0                                             | 0 | 0      |

Current node: C Todo List: []

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | Α | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | В | С | D | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | E | F | G | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | Н | Ι | J | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | K | L | Μ | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Current node: C Todo List: [ B, F, D ]

Cornell University

|   |   |   |   |   |   |   |   |   | - |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | Α | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | В | С | D | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | E | F | G | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | Н | Ι | J | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | K | L | Μ | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Current node: B Todo List: [ F, D ]



Current node: B Todo List: [ F, D, E ]



Cornell University

31

#### **Stacks and Queues**

- One way to implement the todo list is as a stack
  - LIFO: Last In First Out
  - The newest task is the one you'll do next
  - Think of a pile of trays in a cafeteria
    - Trays at the bottom can stay there a while...
- The alternative is a *queue*
  - FIFO: First In First Out
  - The oldest task is the one you'll do next
  - Think of a line of (well-mannered) people
    - First come, first served





- Two operations:
- Enqueue: add something to the end of the queue
- Dequeue: remove something from the front of the queue

#### **Graph traversal**



- Suppose you' re in a maze
- What strategy can you use to find the exit?



















### **Depth-first search (DFS)**



- Call the starting node the root
- We traverse paths all the way until we get to a dead-end, then backtrack (until we find an unexplored path)



Cornell University

### **Another strategy**

- Explore all the cities that are one hop away from the root
- Explore all cities that are two hops away from the root
- 3. Explore all cities that are three hops away from the root
- This corresponds to using a *queue*



. . .

















### **Breadth-first search (BFS)**



 We visit all the vertices at the same level (same distance to the root) before moving on to the next level



#### **BFS vs. DFS**

