
 !

CS 1114:
Sorting and selection (part three)

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

2

Back to the selection problem
!  Can solve with sorting
!  Is there a better way?
!  Rev. Charles L. Dodgson’s problem

–  Based on how to run a tennis tournament
–  Specifically, how to award 2nd prize fairly

3

Problems, algorithms, programs
!  A central distinction in CS
!  Problem: what you want to compute

–  “Find the median”
– Sometimes called a specification

!  Algorithm: how to do it, in general
–  “Repeated find biggest”
–  “Quicksort”, “Mergesort”, “Quickselect” (later)

!  Program: how to do it, in a particular
programming language
function [med] = find_median[A]

...

4

•  How many teams were in the tournament?
•  How many games were played?
•  Which is the second-best team?

Finding the second best team

!  Could use quicksort to sort the teams

!  Step 1: Choose one team as a pivot (say, Arizona)
!  Step 2: Arizona plays every team
!  Step 3: Put all teams worse than Arizona in Group

1, all teams better than Arizona in Group 2 (no ties
allowed)

!  Step 4: Recurse on Groups 1 and 2
!  … eventually will rank all the teams …

5

Quicksort Tournament

!  (Note this is a bit silly – AZ plays 63
games)

!  This gives us a ranking of all teams
– What if we just care about finding the 2nd-best

team?

6

Quicksort Tournament
 Step 1: Choose one team (say, Arizona)
 Step 2: Arizona plays every team
 Step 3: Put all teams worse than Arizona in

Group 1, all teams better than Arizona in
Group 2 (no ties allowed)

 Step 4: Recurse on groups 1 and 2
 … eventually will rank all the teams …

Modifying quicksort to select
!  Suppose Arizona beats 36 teams, and

loses to 27 teams

!  If we just want to know the 2nd-best team,
how can we save time?

7

< 27 teams 36 teams < { { Group 2 Group 1

Modifying quicksort to select –
Finding the 2nd best team

8

< 27 teams 36 teams < { { Group 2 Group 1

< 10 teams 16 teams < { Group 2.2 { Group 2.1

< 2 teams 7 teams <

Modifying quicksort to select –
Finding the 32nd best team

9

< 27 teams 36 teams < { { Group 2 Group 1

< 15 teams 20 teams < { Group 1.2 { Group 1.1

- Q: Which group do we visit next?
- The 32nd best team overall is the

 4th best team in Group 1

10

Find kth largest element in A
(< than k-1 others)

MODIFIED QUICKSORT(A, k):
!  Pick an element in A as the pivot, call it x
!  Divide A into A1 (<x), A2 (=x), A3 (>x)
!  If k < length(A3)

–  MODIFIED QUICKSORT (A3, k)

!  If k > length(A2) + length(A3)
–  Let j = k – [length(A2) + length(A3)]
–  MODIFIED QUICKSORT (A1, j)

!  Otherwise, return x

A = [6.0 5.4 5.5 6.2 5.3 5.0 5.9]

Modified quicksort

!  We’ll call this quickselect
!  Let’s consider the running time…

11

MODIFIED QUICKSORT(A, k):
!  Pick an element in A as the pivot, call it x
!  Divide A into A1 (<x), A2 (=x), A3 (>x)
!  If k < length(A3)

–  Find the element < k others in A3
!  If k > length(A2) + length(A3)

–  Let j = k – [length(A2) + length(A3)]
–  Find the element < j others in A1

!  Otherwise, return x

Big-O notation
!  “Constant of proportionality” doesn’t matter

!  We only care about how the function grows for
“large” values of n

12

O(1)

O(n2)

O(n)

13

What is the running time of:
!  Finding the 1st element?

–  O(1) (effort doesn’t depend on input)

!  Finding the biggest element?
–  O(n) (constant work per input element)

!  Finding the median by repeatedly finding and
removing the biggest element?
–  O(n2) (linear work per input element)

!  Finding the median using quickselect?
–  Worst case? O(n^2)
–  Best case? O(n) …… we’ll show that now ….

Quickselect – “medium” case

!  Suppose we split the array in half each
time (i.e., happen to choose the median
as the pivot)

!  How many comparisons will there be?

14

How many comparisons?
(“medium” case)

!  Suppose length(A) == n

!  Round 1: Compare n elements to the pivot
 … now break the array in half, quickselect one half …

!  Round 2: For remaining half, compare n / 2
elements to the pivot (total # comparisons = n / 2)

 … now break the half in half …

!  Round 3: For remaining quarter, compare n / 4
elements to the pivot (total # comparisons = n / 4)

15

Number of comparisons =
 n + n / 2 + n / 4 + n / 8 + … + 1

 = ?

 " The “medium” case is O(n)!

16

How many comparisons?
(“medium” case)

17

Quickselect
!  For random input this method actually runs in linear time

(beyond the scope of this class)

!  The worst case is still bad

!  Quickselect gives us a way to find the kth element without

actually sorting the array!

!  It’s possible to select in guaranteed linear time (1973)

–  But the code is a little messy
•  And the analysis is messier
http://en.wikipedia.org/wiki/Selection_algorithm

–  Beyond the scope of this course

18

Back to the lightstick

!  By using quickselect we can find the 5%
largest (or smallest) element
– This allows us to compute the trimmed mean

efficiently

19

What about the median?
!  Another way to avoid our bad data points:

– Use the median instead of the mean

0 50 100 150 200 250

12 kids, avg. weight= 40 lbs 1 Arnold, weight = 236 lbs

Median: 40 lbs Mean: (12 x 40 + 236) / 13 = 55 lbs

Median vector for 2D data

!  Mean, like median, was defined in 1D
– For a 2D mean we used the centroid
– Mean of x coordinates and y coordinates

separately
• Call this the “mean vector”

– Does this work for the median also?

20

21

What is the median vector?
!  In 1900, statisticians wanted to find the
“geographical center of the population” to
quantify westward shift

!  Why not the centroid?

–  Someone being born in San Francisco changes the
centroid much more than someone being born in Indiana

!  What about the “median vector”?
–  Take the median of the x coordinates and the median of

the y coordinates separately
–  Would this be different if done in polar coordinates?

22

23

Median vector
!  A little thought will show you that this

doesn’t really make a lot of sense
– Nonetheless, it’s a common approach, and we

will implement it for CS1114
–  In situations like ours it works pretty well

!  It’s almost never an actual datapoint

24

Can we do even better?
!  None of what we described works that well

if we have widely scattered red pixels
– And we can’t figure out lightstick orientation

!  Is it possible to do even better?
– Yes!

!  We will focus on:
– Finding “blobs” (connected red pixels)
– Summarizing the shape of a blob
– Computing orientation from this

!  We’ll need brand new tricks!

Back to the lightstick

25

•  The lightstick forms a large “blob” in the
 thresholded image (among other blobs)

26

What is a blob?

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0

27

Finding blobs
1.  Pick a 1 to start with, where you don’t

know which blob it is in
– When there aren’t any, you’re done

2.  Give it a new blob color
3.  Assign the same blob color to each pixel

that is part of the same blob

28

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

29

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

30

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

31

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

32

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

33

Finding blobs

1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 0 0 0

34

Finding blobs
1.  Pick a 1 to start with, where you don’t

know which blob it is in
– When there aren’t any, you’re done

2.  Give it a new blob color
3.  Assign the same blob color to each pixel

that is part of the same blob
– How do we figure this out?
– You are part of the blob if you are next to

someone who is part of the blob
– But what does “next to” mean?

35

What is a neighbor?
!  We need a notion of neighborhood

–  Sometimes called a neighborhood system

!  Standard system: use vertical and
horizontal neighbors
–  Called “NEWS”: north, east, west, south
–  4-connected, since you have 4 neighbors

!  Another possibility includes diagonals
–  8-connected neighborhood system

36

The long winding road to blobs

!  We actually need to cover a surprising
amount of material to get to blob finding
– Some of which is not obviously relevant
– But (trust me) it will all hang together!

37

A single idea can be used to think about:

– Assigning frequencies to radio stations

– Scheduling your classes so they don’t
conflict

– Figuring out if a chemical is already known

– Finding groups in Facebook

– Ranking web search results

38

Graphs: always the answer

!  We are going to look at an incredibly
important concept called a graph
– Note: not the same as a plot

!  Most problems can be thought of in terms
of graphs
– But it may not be obvious, as with blobs

39

What is a graph?
!  Loosely speaking, a set of things that are

paired up in some way
!  Precisely, a set of vertices V and edges E

– Vertices sometimes called nodes
– An edge (or link) connects a pair of vertices

V1
V2

V3

V4

V5 V = { V1, V2, V3, V4, V5 }

E = { (V1,V3), (V2,V5),
 (V3,V4) }

40

Notes on graphs

!  What can a graph represent?

– Cities and direct flights
– People and friendships
– Web pages and hyperlinks
– Rooms and doorways
–  IMAGES!!!

LAX
ITH

PHL
LGA

Notes on graphs

!  A graph isn’t changed by:
– Drawing the edges differently

• While preserving endpoints
– Renaming the vertices

41

V1

V2
V3

V4

LAX
ITH

PHL
LGA

Next time: graphs

42

Next time:

