CS 1114:
 Sorting and selection (part three)

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Cornell University

Computer Science

Back to the selection problem

- Can solve with sorting
- Is there a better way?
- Rev. Charles L. Dodgson's problem
- Based on how to run a tennis tournament
- Specifically, how to award $2^{\text {nd }}$ prize fairly

Problems, algorithms, programs

- A central distinction in CS
- Problem: what you want to compute
- "Find the median"
- Sometimes called a specification
- Algorithm: how to do it, in general
- "Repeated find biggest"
- "Quicksort", "Mergesort", "Quickselect" (later)
- Program: how to do it, in a particular programming language
function [med] = find_median [A]

Cornell University

- How many teams were in the tournament?
- How many games were played?
- Which is the second-best team?

Finding the second best team

- Could use quicksort to sort the teams
- Step 1: Choose one team as a pivot (say, Arizona)
- Step 2: Arizona plays every team
- Step 3: Put all teams worse than Arizona in Group 1, all teams better than Arizona in Group 2 (no ties allowed)
- Step 4: Recurse on Groups 1 and 2
... eventually will rank all the teams ...

Quicksort Tournament

Quicksort Tournament

Step 1: Choose one team (say, Arizona)
Step 2: Arizona plays every team
Step 3: Put all teams worse than Arizona in Group 1, all teams better than Arizona in Group 2 (no ties allowed)
Step 4: Recurse on groups 1 and 2
... eventually will rank all the teams ...

- (Note this is a bit silly - AZ plays 63 games)
- This gives us a ranking of all teams
- What if we just care about finding the $2^{\text {nd }}$-best team?

Modifying quicksort to select

- Suppose Arizona beats 36 teams, and loses to 27 teams

- If we just want to know the $2^{\text {nd }}$-best team, how can we save time?

Modifying quicksort to select Finding the $2^{\text {nd }}$ best team

7 teams $<\overrightarrow{D_{0}}<2$ teams

Modifying quicksort to select Finding the $3^{\text {nd }}$ best team

- Q: Which group do we visit next?
- The $32^{\text {nd }}$ best team overall is the $4^{\text {th }}$ best team in Group 1

Find $\mathbf{k}^{\text {th }}$ largest element in A (< than k-1 others)

$$
A=\left[\begin{array}{llllllll}
6.0 & 5.4 & 5.5 & 6.2 & 5.3 & 5.0 & 5.9
\end{array}\right]
$$

MODIFIED QUICKSORT(A, k):

- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If $k<$ length(A3)
- MODIFIED QUICKSORT (A3, k)
- If $k>$ length(A2) + length(A3)
- Let $\mathrm{j}=\mathrm{k}$ - [length(A2) + length(A3)]
- MODIFIED QUICKSORT (A1, j)
- Otherwise, return x

Modified quicksort

MODIFIED QUICKSORT(A, k):

- Pick an element in A as the pivot, call it x
- Divide A into A1 (<x), A2 (=x), A3 (>x)
- If $k<$ length(A3)
- Find the element $<k$ others in A3
- If $k>$ length(A2) + length(A3)
- Let $\mathrm{j}=\mathrm{k}-$ [length(A2) + length(A3)]
- Find the element $<\mathrm{j}$ others in A1
- Otherwise, return x
- We' ll call this quickselect
- Let' s consider the running time...

Big-O notation

" "Constant of proportionality" doesn’t matter

$O\left(n^{2}\right)$

- We only care about how the function grows for "large" values of n

O(1)

What is the running time of:

- Finding the $1^{\text {st }}$ element?
- O(1) (effort doesn't depend on input)

- Finding the biggest element?
- O(n) (constant work per input element)

- Finding the median by repeatedly finding and removing the biggest element?
- $O\left(n^{2}\right)$ (linear work per input element)
- Finding the median using quickselect?
- Worst case? O(n^2)
- Best case? O(n) we'll show that now

Quickselect - "medium" case

- Suppose we split the array in half each time (i.e., happen to choose the median as the pivot)
* How many comparisons will there be?

How many comparisons? ("medium" case)

- Suppose length (A) == n

- Round 1: Compare n elements to the pivot
... now break the array in half, quickselect one half ...

- Round 2: For remaining half, compare n/2 elements to the pivot (total \# comparisons $=\mathrm{n} / 2$)
... now break the half in half ...
$\square \square \square \square \square \square$
- Round 3: For remaining quarter, compare n / 4 elements to the pivot (total \# comparisons $=\mathrm{n} / 4$)

How many comparisons? ("medium" case)

Number of comparisons $=$

$$
\begin{aligned}
& n+n / 2+n / 4+n / 8+\ldots+1 \\
& \quad=?
\end{aligned}
$$

\rightarrow The "medium" case is $\mathrm{O}(\mathrm{n})$!

Quickselect

- For random input this method actually runs in linear time (beyond the scope of this class)
- The worst case is still bad
- Quickselect gives us a way to find the $k^{\text {th }}$ element without actually sorting the array!
- It's possible to select in guaranteed linear time (1973)
- But the code is a little messy
- And the analysis is messier http://en.wikipedia.org/wiki/Selection_algorithm
- Beyond the scope of this course

Back to the lightstick

- By using quickselect we can find the 5\% largest (or smallest) element
- This allows us to compute the trimmed mean efficiently

What about the median?

- Another way to avoid our bad data points:
- Use the median instead of the mean

Median vector for 2D data

- Mean, like median, was defined in 1D
- For a 2D mean we used the centroid
- Mean of x coordinates and y coordinates separately
- Call this the "mean vector"
- Does this work for the median also?

What is the median vector?

- In 1900, statisticians wanted to find the "geographical center of the population" to quantify westward shift
- Why not the centroid?
- Someone being born in San Francisco changes the centroid much more than someone being born in Indiana
- What about the "median vector"?
- Take the median of the x coordinates and the median of the y coordinates separately
- Would this be different if done in polar coordinates?

Cornell University

Position of the Geographic Center of Area, Mean and Median Centers of Population: 2000

Median vector

- A little thought will show you that this doesn' t really make a lot of sense
- Nonetheless, it's a common approach, and we will implement it for CS1114
- In situations like ours it works pretty well
- It' s almost never an actual datapoint

Can we do even better?

- None of what we described works that well if we have widely scattered red pixels
- And we can't figure out lightstick orientation
- Is it possible to do even better?
- Yes!
- We will focus on:
- Finding "blobs" (connected red pixels)
- Summarizing the shape of a blob
- Computing orientation from this
- We'll need brand new tricks!

Back to the lightstick

- The lightstick forms a large "blob" in the thresholded image (among other blobs)

What is a blob?

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you' re done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0
0	0	1	0	0	0	0	0	0	0

Finding blobs

1. Pick a 1 to start with, where you don't know which blob it is in

- When there aren't any, you' re done

2. Give it a new blob color
3. Assign the same blob color to each pixel that is part of the same blob

- How do we figure this out?
- You are part of the blob if you are next to someone who is part of the blob
- But what does "next to" mean?

What is a neighbor?

- We need a notion of neighborhood
- Sometimes called a neighborhood system
- Standard system: use vertical and horizontal neighbors
- Called "NEWS": north, east, west, south
- 4-connected, since you have 4 neighbors

- Another possibility includes diagonals
- 8-connected neighborhood system

The long winding road to blobs

- We actually need to cover a surprising amount of material to get to blob finding
- Some of which is not obviously relevant
- But (trust me) it will all hang together!

A single idea can be used to think about:

- Assigning frequencies to radio stations

- Scheduling your classes so they don't conflict
- Figuring out if a chemical is already known
- Finding groups in Facebook
- Ranking web search results

Cornell University

Graphs: always the answer

- We are going to look at an incredibly important concept called a graph
- Note: not the same as a plot
- Most problems can be thought of in terms of graphs
- But it may not be obvious, as with blobs

What is a graph?

- Loosely speaking, a set of things that are paired up in some way
- Precisely, a set of vertices \mathbf{V} and edges \mathbf{E}
- Vertices sometimes called nodes
- An edge (or link) connects a pair of vertices

Cornell University

Notes on graphs

- What can a graph represent?
- Cities and direct flights
- People and friendships
- Web pages and hyperlinks
- Rooms and doorways
- IMAGES!!!

Notes on graphs

- A graph isn't changed by:
- Drawing the edges differently
- While preserving endpoints
- Renaming the vertices

(酮都) Cornell University

Next time:

