
 !

Object recognition

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Invariant local features
!  Find features that are invariant to transformations

–  geometric invariance: translation, rotation, scale
–  photometric invariance: brightness, exposure, …

Feature Descriptors

(Slides courtesy Steve Seitz)

Why local features?
!  Locality

–  features are local, so robust to occlusion and
clutter

!  Distinctiveness:
–  can differentiate a large database of objects

!  Quantity
– hundreds or thousands in a single image

!  Efficiency
–  real-time performance achievable

3

SIFT Features
!  Scale-Invariant Feature Transform

Solving for image transformations

!  Given a set of matching points between
image 1 and image 2…

 … can we solve for an affine

transformation T mapping 1 to 2?

5

Image transformations
!  What about a general homogeneous

transformation?

!  Called a 2D affine transformation

6

Object matching in three steps
1.  Detect features in the

template and search images

2.  Match features: find
“similar-looking” features in
the two images

3.  Find a transformation T that
explains the movement of
the matched features

7

sift

Step 1: Detecting SIFT features
!  SIFT gives us a set of feature frames and

descriptors for an image

8

Step 2: Matching SIFT features

!  Answer: for each feature in image 1, find
the feature with the closest descriptor in
image 2

!  Called nearest neighbor matching

9

Step 3: Find the transformation
!  How do we draw a box around the

template image in the search image?

!  Key idea: there is a transformation that
maps template " search image!

10

Solving for image transformations

!  T maps points in image 1 to the
corresponding point in image 2

11

(1,1,1)

How do we find T ?
!  We already have a bunch of point matches

 [x1 y1] " [x1’ y1’]
 [x2 y2] " [x2’ y2’]
 [x3 y3] " [x3’ y3’]
 …
 [xk yk] " [xk’ yk’]

!  Solution: Find the T that best agrees with
these known matches

!  This problem is a form of (linear) regression

12

Linear regression
!  Simplest case: fitting a line

13

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

Linear regression
!  But what happens here?

14

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

What does this
remind you of ?

Linear regression
!  Simplest case: just 2 points

15

0 1 2 3 4 5 6
0

2

4

6

8

10

12

Time

M
ile

ag
e

Multi-variable linear regression
!  What about 2D affine transformations?

– maps a 2D point to another 2D point

!  We have a set of matches
 [x1 y1] " [x1’ y1’]
 [x2 y2] " [x2’ y2’]
 [x3 y3] " [x3’ y3’]
 …
 [x4 y4] " [x4’ y4’]

16

!  Consider just one match
 [x1 y1] " [x1’ y1’]

 ax1 + by1 + c = x1’
 dx1 + ey1 + f = y1’

!  2 equations, 6 unknowns " we need 3
matches

17

Multi-variable linear regression

Solving for image transformations

!  T is then determined by the maps of 3 points
in image 1 to the corresponding points in
image 2

18

(1,1,1)

How do we solve for T?
!  Given three matches, we have a linear

system with six equations:

 ax1 + by1 + c = x1’
 dx1 + ey1 + f = y1’

 ax2 + by2 + c = x2’
 dx2 + ey2 + f = y2’

 ax3 + by3 + c = x3’
 dx3 + ey3 + f = y3’

19

[x1 y1] " [x1’ y1’]

[x2 y2] " [x2’ y2’]

[x3 y3] " [x3’ y3’]

An Algorithm: Take 1

!  We have many more than three matches
!  Some are correct, many are wrong
!  Idea: select three matches at random, compute T
!  How can we select a good T from amongst all the

potential T’s?

20

Robustness
!  Suppose 1/3 of the matches are wrong
!  We select three at random
!  The probability of at least one selected

match being wrong is ?
!  If we get just one match wrong, the

transformation could be wildly off
!  (The Arnold Schwarzenegger problem)

!  How do we fix this?

21

Testing goodness
!  A good transformation will agree with most of the

matches
!  A bad transformation will disagree with many of

the matches
!  How can we tell if a match agrees with the

transformation T?
 [x1 y1] " [x1’ y1’]

!  Compute the distance between

 and

22

Testing goodness
!  Find the distance between

 and

!  If the distance is small, we call this match an

inlier to T
!  If the distance is large, it’s an outlier to T
!  For a correct match and transformation, this

distance will be close to (but not exactly) zero
!  For an incorrect match or transformation, this

distance will probably be large

23

Testing goodness

24

inlier
outlier

Testing goodness

% define a threshold
thresh = 5.0; % 5 pixels

num_agree = 0;
diff = T * [x1 y1 1]’ – [x1p y1p 1]’;
if norm(diff) < thresh
 num_agree = num_agree + 1;

25

Finding T, take 2

1.  Select three points at random
2.  Solve for the affine transformation T
3.  Count the number of inlier matches to T
4.  If T is has the highest number of inliers so

far, save it
5.  Repeat for N rounds, return the best T

26

Testing goodness
!  This algorithm is called RANSAC (RANdom

SAmple Consensus)

!  Used in an amazing number of computer
vision algorithms

!  Requires two parameters:
– The agreement threshold
– The number of rounds (how many do we

need?)

27

