Object recognition
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(notes modified from Noah Snavely, Spring 2009)

Computer Science
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Invariant local features

= Find features that are invariant to transformations
- geometric invariance: translation, rotation, scale
- photometric invariance: brightness, exposure, ...

(Slides courtesy Steve Seitz)

Feature Descriptors
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Why local features?

= Locality

— features are local, so robust to occlusion and
clutter

= Distinctiveness:
— can differentiate a large database of objects

Quantity
— hundreds or thousands in a single image

Efficiency
- real-time performance achievable
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SIFT Features

= Scale-Invariant Feature Transform
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Solving for image transformations

= Given a set of matching points between
image 1 and image 2...

... can we solve for an affine
transformation T mapping 1 to 27
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Image transformations

= What about a general homogeneous
transformation?

a4 b ¢ ]
T=|d e f
0 0 1
a b c | [ 2] Car+by+c
d e f y | = | de+ey+ f
0 0 1 [ 1] ] 1 ]
= Called a 2D affine transformation
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Object matching in three steps

WTURAL, R
L% ‘L . [ / , {

1. Detect features in the
template and search images

2. Match features: find
“similar-looking” features in
the two images

3. Find a transformation 7 that
explains the movement of
the matched features

Step 1: Detecting SIFT features

= SIFT gives us a set of feature frames and
descriptors for an image

fém:%% Cornell University
&

)



Step 2: Matching SIFT features

= Answer: for each feature in image 1, find
the feature with the closest descriptor in
image 2

= Called nearest neighbor matching
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Step 3: Find the transformation

= How do we draw a box around the
template image in the search image?

= Key idea: there is a transformation that
maps template - search image!

i:gm?% Cornell University
&




Solving for image transformations

(1,1,1) @

= T maps points in image 1 to the
corresponding point in image 2
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How do we find T ?

= We already have a bunch of point matches
[X; vi] 2 [X" vy ]
[ X2 Vol 2 [X) vy, ]
[ X3 Y31 2 [X3" y5']

[ Xk Yl 2 [ X vy ]

= Solution: Find the T that best agrees with
these known matches

= This problem is a form of (linear) regression

i:gm?% Cornell University
&



Linear regression

= Simplest case: fitting a line
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Linear regression

= But what happens here?
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——  What does this
remind you of ?
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Linear regression

= Simplest case: just 2 points
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Multi-variable linear regression

= What about 2D affine transformations?
— maps a 2D point to another 2D point

a b c
I'=1|1d e f
0 0 1

= We have a set of matches
[x1y:1]1 2 [X vy ]
[X2¥2] 2 [X v, ]
[X3y35] 2 [ %3 y3' 1]

[X4Y¥a]l 2 [ X4 Y4 ]
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Multi-variable linear regression

= Consider just one match
[X;y:1] 2 [ Xy vy 1]

a b c T T}
d e f vi | = | v
00 1 ]| 1 | 1

ax;, + by, + ¢ = x;
dx, + ey, + £ = y,

= 2 equations, 6 unknowns 2> we need 3
matches
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Solving for image transformations

(1,L1) ©

= T is then determined by the maps of 3 points
in image 1 to the corresponding points in
image 2
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How do we solve for T?

= Given three matches, we have a linear
system with six equations:

ax, + by, + ¢ = x;
dx, + ey, + £ =

[X;y:] 2 [ Xy vy 1]

I
(%]
'—l

ax, + by, + ¢ =
dx, + ey, + £ =y,
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[ X221 2 [ X ¥y 1
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[X3y3] 2 [ X3 Y3 1
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= We have many more than three matches
= Some are correct, many are wrong
= Jdea: select three matches at random, compute T

= How can we select a good T from amongst all the
potential T's?
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Robustness

Suppose 1/3 of the matches are wrong
We select three at random

The probability of at least one selected
match being wrong is ?

If we get just one match wrong, the
transformation could be wildly off

(The Arnold Schwarzenegger problem)

How do we fix this?
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Testing goodness

A good transformation will agree with most of the
matches

A bad transformation will disagree with many of
the matches

How can we tell if a match agrees with the
transformation 77

[X:y:] 2 [ X vy 1
Compute the distance between

0 ang |0
.
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Testing goodness

= Find the distance between

X1 33/1
Y1 and | v}
1 1

= If the distance is small, we call this match an
inlierto T

T

= If the distance is large, it’s an outlier to T

= For a correct match and transformation, this
distance will be close to (but not exactly) zero

= For an incorrect match or transformation, this
distance will probably be large
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Testing goodness
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Testing goodness

% define a threshold
thresh = 5.0; % 5 pixels

num agree = 0;
diff =T * [x1 y1 1] - [xlp ylp 1] ;
if norm(diff) < thresh

num agree = num agree + 1;
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Finding T, take 2

. Select three points at random
. Solve for the affine transformation T
. Count the number of inlier matches to T

. If T is has the highest number of inliers so
far, save it

. Repeat for N rounds, return the best T
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Testing goodness

= This algorithm is called RANSAC (RANdom
SAmple Consensus)

= Used in an amazing number of computer
vision algorithms

= Requires two parameters:
- The agreement threshold

— The number of rounds (how many do we
need?)
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