Polygons and the convex hull

Prof. Graeme Bailey

http://cs1114.cs.cornell.edu

(notes modified from Noah Snavely, Spring 2009)

Finding the lightstick center

- 1. Threshold the image
- 2. Find blobs (connected components)
- 3. Find the largest blob **B**
- 4. Compute the median vector of **B**

Finding the lightstick

- But we also want to control the robot based on the orientation of the lightstick
- How can we express the shape of the lightstick? (a box? a polygon?)

-

Bounding box

- Not as informative as we might like
- Let's come up with a polygon that fits better...

Detour: convex polygons

 A polygon P is convex if, for any two points A, B inside P, all points on a line connecting A and B are also inside P

Creating Convexity

- Consider the smallest convex shape (polygon?) containing some object P
 - Called the **CONVEX HULL** of P
 - What is the convex hull of P if P is convex?
- Can also define this for sets of points in 2D: the smallest convex shape containing a set of 2D points

Convex hull of point sets

 We can use this to find a simple description of the lightstick's shape

http://www.cs.princeton.edu/~ah/alq_anim/version1/ConvexHull.html

How can we compute the convex hull?

Gift-wrapping algorithm

- Start at lowest point (this is necessarily on the convex hull)
- 2. Rotate the line until we hit another point (ditto)
 - All other points will lie on one side of this line
 - Look for the point that gives you the largest angle with the current line
- 3. Repeat
- 4. You're done when you get back to the starting point

Figure credit: Craig Gotsman

How do we code

this part?

Vectors

 To construct algorithms to compute convex hulls it will help to remind ourselves about vectors.

length of v:

$$||\mathbf{v}|| = \sqrt{|\mathbf{v}_x|^2 + |\mathbf{v}_y|^2}$$

direction of v:

$$\theta = atan\left(\frac{y}{x}\right)$$

.

Vector arithmetic

Vector lengths and angles

- Can define a scalar (inner) product of two vectors.
 Technically, this is anything that satisfies:
 - 1. $\mathbf{v}.\mathbf{v} \ge 0$, and $\mathbf{v}.\mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$
 - 2. $\mathbf{v}_{\cdot}(a\mathbf{u}) = a(\mathbf{v}_{\cdot}\mathbf{u})$, for a any (real) number
 - 3. v.u = u.v
 - 4. v.(u+w) = v.u + v.w
- And then use this to define length and angle via
 - Length (aka norm) $||\mathbf{v}||^2 = \mathbf{v.v}$
 - Angle θ by $\mathbf{v.u} = ||\mathbf{v}|| ||\mathbf{u}|| \cos \theta$
- In 2D we usually define $\mathbf{v} \cdot \mathbf{u} = v_x u_x + v_y u_y$

11

Gift-wrapping revisited

Which point is next?

Answer: the point \mathbf{w} that maximizes the angle between $\mathbf{u} - \mathbf{v}$ and $\mathbf{w} - \mathbf{v}$

What is the running time of this algorithm?

Other convex hull algorithms

- 1. Connect the leftmost and rightmost points (since both must be on the convex hull).
- 2. Recursively ... find the furthest point to the left (right) of this line and form a triangle.

What is the running time of this algorithm?

1:

Other convex hull algorithms

- 1. Start with the lowest point, and sort the points by decreasing angle to the horizontal
- 2. Create a polygon by joining the points in that order
- 3. Trace this polygon, deleting edges requiring a clockwise angle

What is the running time of this algorithm?

Lightstick orientation

- We have a convex shape
 - Now what?

- Want to find which way it's pointed
- For now, we'll find the two points that are furthest away from each other, and call that the "major axis"

