
CS1112 Lecture 9

Lecture slides 1

Lecture 9 2

 Previous lecture
 User-defined functions

 Function header
 Input parameters and return variables

 Today’s lecture
 User-defined functions

 local memory space
 Subfunction

 1-dimensional array and plot

 Announcement
 Discussion this week in classrooms as listed in Student

Center
 Make use of consulting/office hours

Lecture 9 15

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters out1, out2, …

 in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

 out1, out2, … are not defined until the executable code in the
function assigns values to them.

Lecture 9 16

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

Lecture 9 18

% Given f and n
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0

Lecture 9 19

Comments in functions

 Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window

 1st line of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window

 Every function should have a comment block after the
function header that says what the function does
concisely

Lecture 9 20

Accessing your functions

For now*, put your related functions and scripts
in the same directory.

dotsInRings.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility

MyDirectory

Any script/function that
calls polar2xy.m

CS1112 Lecture 9

Lecture slides 2

Lecture 9 22

Why write user-defined function?

 Easy code re-use—great for “common” tasks
 A function can be tested independently easily
 Keep a driver program clean by keeping detail

code in functions—separate, non-interacting
files

 Facilitate top-down design
 Software management

Lecture 9 23

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta=_______
r=_______

% Convert from polar to Cartesian
x=_______
y=_______

% Use plot to draw dot
end

end

Each task becomes a
function that can be
implemented and
tested independently

Lecture 9 24

Facilitates top-down design

1. Focus on how to draw the figure given just a
specification of what the function DrawStar
does.

2. Figure out how to implement DrawStar.

Lecture 9 25

To specify a function…

… you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)

% Adds a 5-pointed star to the

% figure window. Star has radius r,

% center(xc,yc) and color c where c

% is one of 'r', 'g', 'y', etc.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

Lecture 9 26

To implement a function…

… you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
for k=1:11

theta = (2*k-1)*pi/10;
if 2*floor(k/2)~=k

x(k) = xc + r*cos(theta);
y(k) = yc + r*sin(theta);

else
x(k) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta);

end
end
fill(x,y,c)

Lecture 9 31

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

1
22

b

y

a

x

CS1112 Lecture 9

Lecture slides 3

Lecture 9 32

Software Management

During this year :

You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

Lecture 9 33

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. I change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

Lecture 9 35

Script vs. Function

 A script is executed line-by-
line just as if you are typing it
into the Command Window
 The value of a variable in a

script is stored in the Command
Window Workspace

 A function has its own private
(local) function workspace
that does not interact with
the workspace of other
functions or the Command
Window workspace
 Variables are not shared

between workspaces even if
they have the same name

Lecture 9 36

What will be printed?

% Script file

p= -3;

q= absolute(p);

disp(p)

function q = absolute(p)

% q is absolute value of p

if (p<0)

p= -p;

end

q= p;

A: -3 B: 3 C: error

Lecture 9 52

x = 1;
x = f(x+1);
y = x+1;
disp(y)

function y = f(x)
x = x+1;
y = x+1;

What is the output?

A: 1 B: 2 C: 3 D: 4 E: 5

Lecture 9 54

Execute the statement y= foo(x)

 Matlab looks for a function called foo (m-file called
foo.m)

 Argument (value of x) is copied into function foo’s local
parameter
 called “pass-by-value,” one of several argument passing

schemes used by programming languages

 Function code executes within its own workspace
 At the end, the function’s output argument (value) is

sent from the function to the place that calls the
function. E.g., the value is assigned to y.

 Function’s workspace is deleted
 If foo is called again, it starts with a new, empty workspace

CS1112 Lecture 9

Lecture slides 4

Lecture 9 57

Subfunction

 There can be more than one function in an M-file
 top function is the main function and has the name of

the file
 remaining functions are subfunctions, accessible only by

the functions in the same m-file
 Each (sub)function in the file begins with a function

header
 Keyword end is not necessary at the end of a

(sub)function

Lecture 11 59

1-d array: vector

 An array is a named collection of like data
organized into rows or columns

 A 1-d array is a row or a column, called a vector
 An index identifies the position of a value in a

vector

.8 .2 1

1 2 3

v

60

Here are a few different ways to create a vector

count= zeros(1,6)

a= linspace(10,30,5)

b= 7:-2:0

c= [3 7 2 1]

d= [3; 7; 2]

e= d’

0 0 0 0 0count 0

10 15 20 25 30a

3 7 2 1c

3

7

2

d

Similar functions: ones, rand

7 5 3 1b

3 7 2e

61

Start with drawing a single line segment

a= 0; % x-coord of pt 1

b= 1; % y-coord of pt 1

c= 5; % x-coord of pt 2

d= 3; % y-coord of pt 2

plot([a c], [b d], ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

Making an x-y plot

a= [0 4 3 8]; % x-coords

b= [1 2 5 3]; % y-coords

plot(a, b, ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

0 2 4 6 8 10
0

1

2

3

4

5

6

63

Making an x-y plot with multiple graphs (lines)

a= [0 4 5 8];

b= [1 2 5 3];

f= [0 4 6 8 10];

g= [2 2 6 4 3];

plot(a,b,'-*',f,g,'c')

legend('graph 1 name', 'graph 2 name')

xlabel('x values')

ylabel('y values')

title('My graphs', 'Fontsize',14)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x values

y
va

lu
es

My graphs

graph 1 name

graph 2 name

CS1112 Lecture 9

Lecture slides 5

Lecture 11 66

Array index starts at 1

Let k be the index of vector x, then
 k must be a positive integer
 1<= k <= length(x)
 To access the kth element: x(k)

5 .4 .91 -4 -1 7x

1 2 3 4 5 6

Lecture 11 68

Accessing values in a vector

Given the vector score …
score(4)= 80;
score(5)= (score(4)+score(5))/2;
k= 1;
score(k+1)= 99;

93 92 87 0 90 82

1 2 3 4 5 6

score 99 80 85

See plotComparison2.m

Lecture 11 69

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left

% corner at (a,b), width w, height h.

x= [a a+w a+w a a]; % x data

y= [b b b+h b+h b]; % y data

plot(x, y)

Fill in the missing vector values!

