
CS1112 Lecture 9

Lecture slides 1

Lecture 9 2

 Previous lecture
 User-defined functions

 Function header
 Input parameters and return variables

 Today’s lecture
 User-defined functions

 local memory space
 Subfunction

 1-dimensional array and plot

 Announcement
 Discussion this week in classrooms as listed in Student

Center
 Make use of consulting/office hours

Lecture 9 15

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters out1, out2, …

 in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

 out1, out2, … are not defined until the executable code in the
function assigns values to them.

Lecture 9 16

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

Lecture 9 18

% Given f and n
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0

Lecture 9 19

Comments in functions

 Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window

 1st line of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window

 Every function should have a comment block after the
function header that says what the function does
concisely

Lecture 9 20

Accessing your functions

For now*, put your related functions and scripts
in the same directory.

dotsInRings.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility

MyDirectory

Any script/function that
calls polar2xy.m

CS1112 Lecture 9

Lecture slides 2

Lecture 9 22

Why write user-defined function?

 Easy code re-use—great for “common” tasks
 A function can be tested independently easily
 Keep a driver program clean by keeping detail

code in functions—separate, non-interacting
files

 Facilitate top-down design
 Software management

Lecture 9 23

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta=_______
r=_______

% Convert from polar to Cartesian
x=_______
y=_______

% Use plot to draw dot
end

end

Each task becomes a
function that can be
implemented and
tested independently

Lecture 9 24

Facilitates top-down design

1. Focus on how to draw the figure given just a
specification of what the function DrawStar
does.

2. Figure out how to implement DrawStar.

Lecture 9 25

To specify a function…

… you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)

% Adds a 5-pointed star to the

% figure window. Star has radius r,

% center(xc,yc) and color c where c

% is one of 'r', 'g', 'y', etc.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

Lecture 9 26

To implement a function…

… you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
for k=1:11

theta = (2*k-1)*pi/10;
if 2*floor(k/2)~=k

x(k) = xc + r*cos(theta);
y(k) = yc + r*sin(theta);

else
x(k) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta);

end
end
fill(x,y,c)

Lecture 9 31

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

1
22
















b

y

a

x

CS1112 Lecture 9

Lecture slides 3

Lecture 9 32

Software Management

During this year :

You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

Lecture 9 33

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. I change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

Lecture 9 35

Script vs. Function

 A script is executed line-by-
line just as if you are typing it
into the Command Window
 The value of a variable in a

script is stored in the Command
Window Workspace

 A function has its own private
(local) function workspace
that does not interact with
the workspace of other
functions or the Command
Window workspace
 Variables are not shared

between workspaces even if
they have the same name

Lecture 9 36

What will be printed?

% Script file

p= -3;

q= absolute(p);

disp(p)

function q = absolute(p)

% q is absolute value of p

if (p<0)

p= -p;

end

q= p;

A: -3 B: 3 C: error

Lecture 9 52

x = 1;
x = f(x+1);
y = x+1;
disp(y)

function y = f(x)
x = x+1;
y = x+1;

What is the output?

A: 1 B: 2 C: 3 D: 4 E: 5

Lecture 9 54

Execute the statement y= foo(x)

 Matlab looks for a function called foo (m-file called
foo.m)

 Argument (value of x) is copied into function foo’s local
parameter
 called “pass-by-value,” one of several argument passing

schemes used by programming languages

 Function code executes within its own workspace
 At the end, the function’s output argument (value) is

sent from the function to the place that calls the
function. E.g., the value is assigned to y.

 Function’s workspace is deleted
 If foo is called again, it starts with a new, empty workspace

CS1112 Lecture 9

Lecture slides 4

Lecture 9 57

Subfunction

 There can be more than one function in an M-file
 top function is the main function and has the name of

the file
 remaining functions are subfunctions, accessible only by

the functions in the same m-file
 Each (sub)function in the file begins with a function

header
 Keyword end is not necessary at the end of a

(sub)function

Lecture 11 59

1-d array: vector

 An array is a named collection of like data
organized into rows or columns

 A 1-d array is a row or a column, called a vector
 An index identifies the position of a value in a

vector

.8 .2 1

1 2 3

v

60

Here are a few different ways to create a vector

count= zeros(1,6)

a= linspace(10,30,5)

b= 7:-2:0

c= [3 7 2 1]

d= [3; 7; 2]

e= d’

0 0 0 0 0count 0

10 15 20 25 30a

3 7 2 1c

3

7

2

d

Similar functions: ones, rand

7 5 3 1b

3 7 2e

61

Start with drawing a single line segment

a= 0; % x-coord of pt 1

b= 1; % y-coord of pt 1

c= 5; % x-coord of pt 2

d= 3; % y-coord of pt 2

plot([a c], [b d], ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

Making an x-y plot

a= [0 4 3 8]; % x-coords

b= [1 2 5 3]; % y-coords

plot(a, b, ‘-*’)

x-values
(a vector)

y-values
(a vector)

Line/marker
format

0 2 4 6 8 10
0

1

2

3

4

5

6

63

Making an x-y plot with multiple graphs (lines)

a= [0 4 5 8];

b= [1 2 5 3];

f= [0 4 6 8 10];

g= [2 2 6 4 3];

plot(a,b,'-*',f,g,'c')

legend('graph 1 name', 'graph 2 name')

xlabel('x values')

ylabel('y values')

title('My graphs', 'Fontsize',14)

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x values

y
va

lu
es

My graphs

graph 1 name

graph 2 name

CS1112 Lecture 9

Lecture slides 5

Lecture 11 66

Array index starts at 1

Let k be the index of vector x, then
 k must be a positive integer
 1<= k <= length(x)
 To access the kth element: x(k)

5 .4 .91 -4 -1 7x

1 2 3 4 5 6

Lecture 11 68

Accessing values in a vector

Given the vector score …
score(4)= 80;
score(5)= (score(4)+score(5))/2;
k= 1;
score(k+1)= 99;

93 92 87 0 90 82

1 2 3 4 5 6

score 99 80 85

See plotComparison2.m

Lecture 11 69

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left

% corner at (a,b), width w, height h.

x= [a a+w a+w a a]; % x data

y= [b b b+h b+h b]; % y data

plot(x, y)

Fill in the missing vector values!

