
CS1112 Lecture 8 9/18/2014

Lecture slides 1

 Previous Lecture:
 Nested loops
 Developing algorithms and code

 Today’s Lecture:
 Review nested loops
 User-defined functions

 Announcements:
 Project 2 due today at 11pm
 This weekend is a great time to review, get caught up

Lecture 8 4

Rational approximation of 
  = 3.141592653589793…
 Can be closely approximated by fractions,

e.g.,   22/7
 Rational number: a quotient of two integers
 Approximate  as p/q where p and q are positive

integers ≤M
 Start with a straight forward solution:

 Get M from user
 Calculate quotient p/q for all combinations of p and q
 Pick best quotient  smallest error

% Rational approximation of pi

M = input(‘Enter M: ’);

% Check all possible denominators
for q = 1:M

end

For current q find best numerator p…
Check all possible numerators

% Rational approximation of pi

M = input(‘Enter M: ’);
% Best q, p, and error so far
qBest=1; pBest=1;
err_pq = abs(pBest/qBest - pi);

% Check all possible denominators
for q = 1:M

% At this q, check all possible numerators
for p = 1:M

end
end

myPi = pBest/qBest;

% Complicated version in the book

M = input(‘Enter M: ’);
% Best q, p, and error so far
qBest=1; pBest=1;
err_pq = abs(pBest/qBest - pi);

% Check all possible denominators
for q = 1:M

% At this q, check all possible numerators
p0=1; e0=abs(p0/q - pi); % best p & error for this q
for p = 1:M

if abs(p/q - pi) < e0 % new best numerator found
p0=p; e0 = abs(p/q - pi);

end
end
% Is best quotient for this q is best over all?
if e0 < err_pq

pBest=p0; qBest=q; err_pq=e0;
end

end
myPi = pBest/qBest;

% Rational approximation of pi

M = input(‘Enter M: ’);
% Best q, p, and error so far
qBest=1; pBest=1;
err_pq = abs(pBest/qBest - pi);

% Check all possible denominators
for q = 1:M

% At this q, check all possible numerators
for p = 1:M

if abs(p/q - pi) < err_pq % best p/q found
err_pq = abs(p/q - pi);
pBest= p;
qBest= q;

end
end

end

myPi = pBest/qBest;

Algorithm: Finding the best in a set

Init bestSoFar
Loop over set

if current is better than bestSoFar
bestSoFar  current

end
end

CS1112 Lecture 8 9/18/2014

Lecture slides 2

Lecture 8 13

Analyze the program for efficiency

 See Eg3_1 and FasterEg3_1 in the book

for a = 1:n
disp(‘alpha’)
for b = 1:m

disp(‘beta’)
end

end

How many times are “alpha”
and “beta” displayed?

A: n, m

B: m, n

C: n, n+m

D: n, n*m

E: m*n, m

15Lecture 8 15

Built-in functions

 We’ve used many Matlab built-in functions, e.g.,
rand, abs, floor, rem

 Example: abs(x-.5)

 Observations:
 abs is set up to be able to work with any valid data
 abs doesn’t prompt us for input; it expects that we

provide data that it’ll then work on
 abs returns a value that we can use in our program

yDistance= abs(y2-y1);

while abs(myPi-pi) > .0001
...

16Lecture 8 16

User-defined functions

 We can write our own functions to perform a
specific task
 Example: draw a disk with specified radius, color, and

center coordinates
 Example: generate a random floating point number in

a specified interval
 Example: convert polar coordinates to x-y

(Cartesian) coordinates

18Lecture 8 18

Draw a bulls eye figure with randomly placed dots

 Dots are randomly placed
within concentric rings

 User decides how many
rings, how many dots

19Lecture 8 19

Draw a bulls eye figure with randomly placed dots

 What are the main tasks?
 Accommodate variable number

of rings—loop

 For each ring
 Need many dots
 For each dot

 Generate random position
 Choose color
 Draw it

20Lecture 8 20

Convert from polar to Cartesian coordinates


r

Polar coordinates

y

x

Cartesian coordinates

CS1112 Lecture 8 9/18/2014

Lecture slides 3

21Lecture 8 21

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta= _______
r= _______

% Convert from polar to Cartesian
x= _______
y= _______

% Use plot to draw dot
end

end

A common task! Create a
function polar2xy to do
this. polar2xy likely will
be useful in other problems
as well.

25Lecture 8 25

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r

theta

Think of polar2xy as a factory

x
y

function [x, y] = polar2xy(r,theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y).
% theta is in degrees.

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

r= input(‘Enter radius: ’);
theta= input(‘Enter angle in degrees: ’);

rads= theta*pi/180; % radian
x= r*cos(rads);
y= r*sin(rads);

30Lecture 8 30

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta= _______
r= _______

% Convert from polar to Cartesian
x= _______
y= _______

% Use plot to draw dot
end

end

[x,y] = polar2xy(r,theta);

31Lecture 8 31

function [x, y] = polar2xy(r,theta)

Output
parameter list
enclosed in []

Function name
(This file’s name is
polar2xy.m)

Input parameter
list enclosed in

()

CS1112 Lecture 8 9/18/2014

Lecture slides 4

33Lecture 8 33

Function header is the “contract” for how the function will be used (called)

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r, theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

35Lecture 8 35

dotsInRings.m

(functions with multiple input parameters)
(functions with a single output parameter)

(functions with multiple output parameters)
(functions with no output parameter)

36Lecture 8 36

General form of a user-defined function

function [out1, out2, …]= functionName (in1, in2, …)
% 1-line comment to describe the function
% Additional description of function

Executable code that at some point assigns
values to output parameters out1, out2, …

 in1, in2, … are defined when the function begins execution.
Variables in1, in2, … are called function parameters and they hold
the function arguments used when the function is invoked (called).

 out1, out2, … are not defined until the executable code in the
function assigns values to them.

37

Returning a value ≠ printing a value

function [x, y] = polar2xy(r, theta)
% Convert polar coordinates (r,theta) to
% Cartesian coordinates (x,y). Theta in degrees.
…

% Convert polar (r1,t1) to Cartesian (x1,y1)
r1= 1; t1= 30;
[x1, y1]= polar2xy(r1, t1);
plot(x1, y1, ‘b*’)
…

You have this function:

Code to call the above function:

39Lecture 8 39

Comments in functions

 Block of comments after the function header is
printed whenever a user types

help <functionName>
at the Command Window

 1st line of this comment block is searched whenever a
user types

lookfor <someWord>
at the Command Window

 Every function should have a comment block after the
function header that says what the function does
concisely

% Given f and n
d= convertLength(f,n);
d= convertLength(f*12+n);
d= convertLength(f+n/12);
x= min(convertLength(f,n), 1);
y= convertLength(pi*(f+n/12)^2);

A: 1 B: 2 C: 3 D: 4

function m = convertLength(ft,in)
% Convert length from feet (ft) and inches (in)
% to meters (m).

. . .

Given this function:

How many proper calls to convertLength are shown below?

E: 5 or 0

CS1112 Lecture 8 9/18/2014

Lecture slides 5

Accessing your functions

For now*, put your related functions and scripts
in the same directory.

dotsInCircles.m

randDouble.m

polar2xy.m

drawColorDot.m

*The path function gives greater flexibility

MyDirectory

Any script/function that
calls polar2xy.m

43Lecture 8 43

Why write user-defined function?

 Easy code re-use—great for “common” tasks
 A function can be tested independently easily
 Keep a driver program clean by keeping detail

code in functions—separate, non-interacting
files

 Facilitate top-down design
 Software management

44Lecture 8 44

c= input('How many concentric rings? ');
d= input('How many dots? ');

% Put dots btwn circles with radii rRing and (rRing-1)
for rRing= 1:c

% Draw d dots
for count= 1:d

% Generate random dot location (polar coord.)
theta=_______
r=_______

% Convert from polar to Cartesian
x=_______
y=_______

% Use plot to draw dot
end

end

Each task becomes a
function that can be
implemented and
tested independently

45Lecture 8 45

Facilitates top-down design

1. Focus on how to draw the figure given just a
specification of what the function DrawStar
does.

2. Figure out how to implement DrawStar.

46Lecture 8 46

To specify a function…

… you describe how to use it, e.g.,

function DrawStar(xc,yc,r,c)

% Adds a 5-pointed star to the

% figure window. Star has radius r,

% center(xc,yc) and color c where c

% is one of 'r', 'g', 'y', etc.

Given the specification, the user of the
function doesn’t need to know the detail
of the function—they can just use it!

47Lecture 8 47

To implement a function…

… you write the code so that the function “lives up to” the
specification. E.g.,

r2 = r/(2*(1+sin(pi/10)));
tau = pi/5;
for k=1:11

theta = (2*k-1)*pi/10;
if 2*floor(k/2)~=k

x(k) = xc + r*cos(theta);
y(k) = yc + r*sin(theta);

else
x(k) = xc + r2*cos(theta);
y(k) = yc + r2*sin(theta);

end
end
fill(x,y,c)

CS1112 Lecture 8 9/18/2014

Lecture slides 6

49Lecture 8 49

Software Management

Today:

I write a function
EPerimeter(a,b)

that computes the perimeter of the ellipse

1
22
















b

y

a

x

50Lecture 8 50

Software Management

During this year :

You write software that makes extensive use of

EPerimeter(a,b)

Imagine hundreds of programs each with several
lines that reference EPerimeter

51Lecture 8 51

Software Management

Next year:

I discover a more efficient way to approximate
ellipse perimeters. I change the implementation of

EPerimeter(a,b)

You do not have to change your software at all.

53Lecture 8 53

Script vs. Function

 A script is executed line-by-
line just as if you are typing it
into the Command Window
 The value of a variable in a

script is stored in the Command
Window Workspace

 A function has its own private
(local) function workspace
that does not interact with
the workspace of other
functions or the Command
Window workspace
 Variables are not shared

between workspaces even if
they have the same name

56Lecture 8 56

What will be printed?

% Script file
p= -3;
q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
if (p<0)

p= -p;
end
q= p;

A: -3 B: 3 C: error

Lecture 10 58

What will be printed?

% Script file
p= -3;
q= absolute(p);
disp(p)

function q = absolute(p)
% q is the absolute value of p
if (p<0)

p= -p;
end
q= p;

Command Window Workspace

p -3

