CS1112 Lecture 7

m Previous Lecture:
= Iteration usingwhile

= Today’s Lecture:
= Nested loops
= Developing algorithms

= Announcements:

= Discussion this week in the lab. Read Insight §3.2 before
discussion if possible.

= Project 2 due Thursday at | Ipm
= We do not use break in this course
= Make use of Piazza, office hrs, and consulting hrs

What is the last line of output?

X =1;

disp(x)

y = X;

while y==x && x<=4 && y<=4
X = 2*X;
disp(x)

end

A:1| B:2| C:4| D:8|

A simple 3-line script

DrawRect(...)
DrawDisk(...)
DrawStar(...)

% drawDemo
close all
figure

axis equal off
hold on

DrawRect(0,0,2,2, "K")
DrawDisk(1,1,1,*m")
DrawStar(1,1,1,%y")

m
%

hold off

A general graphics framework

% drawDemo
close all
figure

axis equal off
hold on

Code fragment to draw the
objects (rectangle, disk, star)

hold off

Lecture slides

Example: Nested Stars

CS1112 Lecture 7

Knowing how to draw

g How difficult is it to draw

Lecture 7 7

Pattern for doing something n times

n=__
for k= 1:n

% code to do
% that something

end

Lecture 7 18

x= 0; y= 0; % Ffigure centered at (0,0)

s= 2.1; % side length of square
DrawRect(x-s/2,y-s/2,s,s,’k”)

r=1; k=1;
while r > 0.1 %r still big
% draw a star
if rem(k,2)==1 %odd number
DrawStar(x,y,r,’m”) %magenta
else
DrawStar(x,y,r,’y’) %yellow
end
% reduce r
r=r/1.2;
k= k + 1;
end

Lecture 7 19

Example: Are they prime?

= Given integers a and b, write a program that lists
all the prime numbers in the range [a, b].

m Assume a>1, b>| and a<b.

Lecture 7 22

Example: Are they prime?
Subproblem: s it prime?

= Given integers a and b, write a program that lists
all the prime numbers in the range [a, b].

m Assume a>1, b>| and a<b.

= Write a program fragment to determine whether
a given integer n is prime, n>1.

= Reminder: rem(x,y) returns the remainder of x
divided by y.

Lecture 7 2

Lecture slides

CS1112 Lecture 7

Example: Times Table

Write a script to print a times table for a
specified range.

Row headings 3 4 5 6 7

\ 9|12 15| 18|21

121161201 24| 28 Column headings

15/20(25| 30| 35
18|24 30| 36| 42
21|28| 35| 42|49

N O OO AN W

Developing the
algorithm for the
times table

3 4 5 6 7
9| 12| 15| 18|21
12| 16]20| 24| 28
15/ 20| 25|30 35
18|24 30| 36| 42
21| 28| 35| 42| 49

N O O N W

disp("Show the times table for specified range”)
lo= input(*“What is the lower bound? *);
hi= input("What is the upper bound? *);

Rational approximation of TC

= 7 =3.141592653589793...

= Can be closely approximated by fractions,
eg, n~=22(7

= Rational number: a quotient of two integers

= Approximate 1 as p/q where p and q are positive
integers <M

= Start with a straight forward solution:
= Get M from user
= Calculate quotient p/q for all combinations of p and q
= Pick best quotient > smallest error

% Rational approximation of pi

M = input(“Enter M: *);

% Check all possible denominators
for q = 1:M

For current q find best numerator p...
Check all possible numerators

end

Lecture slides

% Rational approximation of pi

M = input(“Enter M: 7);

% Check all possible denominators

for g = 1:M
% At this q, check all possible numerators
for p = 1:M

end
end

CS1112 Lecture 7

% Rational approximation of pi .
Analyze the program for efficiency
M = input(“Enter M: *);

% Best g, p, and error so far .
qBest=1; pBest=1; = See Eg3_ | and FasterEg3_1 in the book
err_pq = abs(pBest/gBest - pi);

"f: Check illlw possible denominators for a = 1:n How many times are “alpha”
or q = 1: - G 5 « "o)
% At this g, check all possible numerators g;ipg E_IIT_];) and "beta” displayed?

for p = 1:M L

disp(“beta’)
end
end

end

end

myPi = pBest/gBest;

Lecture 7 45

The savvy programmer...

= Learns useful programming patterns and use them
where appropriate
= Seeks inspiration by working through test data “by
hand”
= Asks, “What am | doing?” at each step

= Sets up a variable for each piece of information maintained
when working the problem by hand

» Decomposes the problem into manageable subtasks

= Refines the solution iteratively, solving simpler subproblems
first

= Remembers to check the problem’s boundary
conditions

= Validates the solution (program) by trying it on test data

Lecture 7 52

Lecture slides

