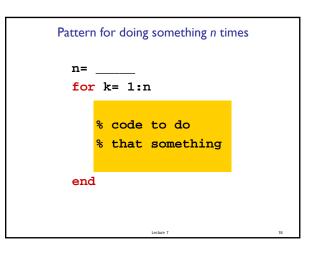
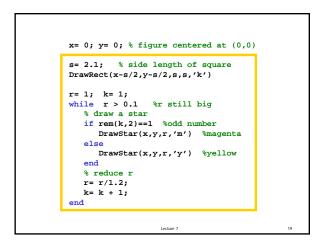
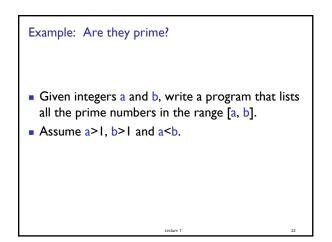
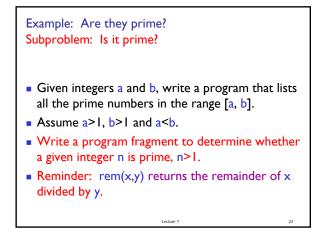
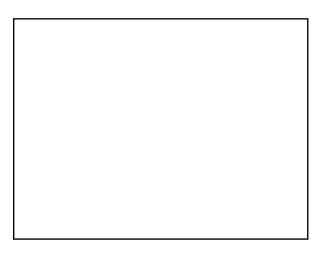

Lecture 7

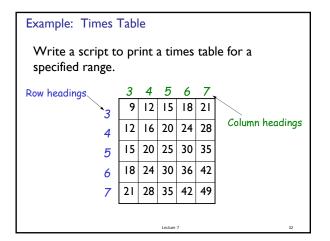


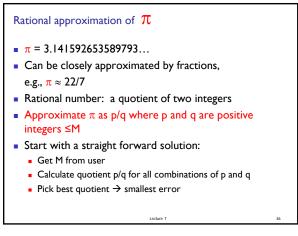

Example: Nested Stars

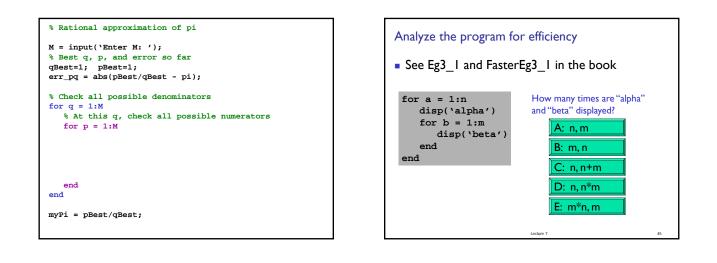



Lecture slides








	Developing the										
algorithm for the times table											
lines lable											
	_		_		_						
	3	4	5	6	7						
3	9	12	15	18	21						
4	12	16	20	24	28						
5	15	20	25	30	35						
6	18	24	30	36	42						
7	21	28	35	42	49						

disp	('Show	the t	time	es ta	able fo	or spec	ified	range')
lo=	input('What	is	the	lower	bound?	');	
hi=	input('What	is	the	upper	bound?	');	

% Rational approximation of pi											
<pre>M = input('Enter M: ');</pre>											
<pre>% Check all possible denominators for g = 1:M</pre>											
-											
For current q find best numerator p Check all possible numerators											
end											

```
% Rational approximation of pi
M = input('Enter M: ');
% Check all possible denominators
for q = 1:M
% At this q, check all possible numerators
for p = 1:M
end
end
```


The savvy programmer...

- Learns useful programming patterns and use them where appropriate
- Seeks inspiration by working through test data "by hand"
 - Asks, "What am I doing?" at each step
 - Sets up a variable for each piece of information maintained when working the problem by hand
- Decomposes the problem into manageable subtasks
 Refines the solution iteratively, solving simpler subproblems
- first

 Remembers to check the problem's boundary conditions
- Validates the solution (program) by trying it on test data

Lecture 7

52