
CS1112 Lecture 7

Lecture slides 1

 Previous Lecture:
 Iteration using while

 Today’s Lecture:
 Nested loops
 Developing algorithms

 Announcements:
 Discussion this week in the lab. Read Insight §3.2 before

discussion if possible.
 Project 2 due Thursday at 11pm
 We do not use break in this course
 Make use of Piazza, office hrs, and consulting hrs

Lecture 7 3

x = 1;
disp(x)
y = x;
while y==x && x<=4 && y<=4

x = 2*x;
disp(x)

end

What is the last line of output?

A: 1 B: 2 C: 4 D: 8

Lecture 6 12

A simple 3-line script

DrawRect(...)

DrawDisk(...)

DrawStar(...)

% drawDemo
close all
figure
axis equal off
hold on

DrawRect(0,0,2,2,'k')
DrawDisk(1,1,1,'m')
DrawStar(1,1,1,'y')

hold off

Lecture 6 14

% drawDemo
close all
figure
axis equal off
hold on

Code fragment to draw the
objects (rectangle, disk, star)

hold off

A general graphics framework

Lecture 7 15

Example: Nested Stars

CS1112 Lecture 7

Lecture slides 2

Lecture 7 17

Knowing how to draw

How difficult is it to draw

Lecture 7 18

Pattern for doing something n times

n= _____

for k= 1:n

% code to do

% that something

end

Lecture 7 19

x= 0; y= 0; % figure centered at (0,0)

s= 2.1; % side length of square
DrawRect(x-s/2,y-s/2,s,s,’k’)

r= 1; k= 1;
while r > 0.1 %r still big

% draw a star
if rem(k,2)==1 %odd number

DrawStar(x,y,r,’m’) %magenta
else

DrawStar(x,y,r,’y’) %yellow
end
% reduce r
r= r/1.2;
k= k + 1;

end

Lecture 7 22

Example: Are they prime?

 Given integers a and b, write a program that lists
all the prime numbers in the range [a, b].

 Assume a>1, b>1 and a<b.

Lecture 7 23

Example: Are they prime?
Subproblem: Is it prime?

 Given integers a and b, write a program that lists
all the prime numbers in the range [a, b].

 Assume a>1, b>1 and a<b.
 Write a program fragment to determine whether

a given integer n is prime, n>1.
 Reminder: rem(x,y) returns the remainder of x

divided by y.

CS1112 Lecture 7

Lecture slides 3

Lecture 7 32

Example: Times Table

9 12 15 18 21

12 16 20 24 28

15 20 25 30 35

18 24 30 36 42

21 28 35 42 49

Write a script to print a times table for a
specified range.

3 4 5 6 7

3
4
5
6
7

Row headings

Column headings

Developing the
algorithm for the
times table

9 12 15 18 21

12 16 20 24 28

15 20 25 30 35

18 24 30 36 42

21 28 35 42 49

3 4 5 6 7
3
4
5
6
7

disp('Show the times table for specified range')

lo= input('What is the lower bound? ');

hi= input('What is the upper bound? ');

Lecture 7 36

Rational approximation of
 = 3.141592653589793…
 Can be closely approximated by fractions,

e.g., 22/7
 Rational number: a quotient of two integers
 Approximate as p/q where p and q are positive

integers ≤M
 Start with a straight forward solution:

 Get M from user
 Calculate quotient p/q for all combinations of p and q
 Pick best quotient smallest error

% Rational approximation of pi

M = input(‘Enter M: ’);

% Check all possible denominators
for q = 1:M

end

For current q find best numerator p…
Check all possible numerators

% Rational approximation of pi

M = input(‘Enter M: ’);

% Check all possible denominators
for q = 1:M

% At this q, check all possible numerators
for p = 1:M

end
end

CS1112 Lecture 7

Lecture slides 4

% Rational approximation of pi

M = input(‘Enter M: ’);
% Best q, p, and error so far
qBest=1; pBest=1;
err_pq = abs(pBest/qBest - pi);

% Check all possible denominators
for q = 1:M

% At this q, check all possible numerators
for p = 1:M

end
end

myPi = pBest/qBest;

Lecture 7 45

Analyze the program for efficiency

 See Eg3_1 and FasterEg3_1 in the book

for a = 1:n
disp(‘alpha’)
for b = 1:m

disp(‘beta’)
end

end

How many times are “alpha”
and “beta” displayed?

A: n, m

B: m, n

C: n, n+m

D: n, n*m

E: m*n, m

Lecture 7 52

The savvy programmer…

 Learns useful programming patterns and use them
where appropriate

 Seeks inspiration by working through test data “by
hand”
 Asks, “What am I doing?” at each step
 Sets up a variable for each piece of information maintained

when working the problem by hand

 Decomposes the problem into manageable subtasks
 Refines the solution iteratively, solving simpler subproblems

first

 Remembers to check the problem’s boundary
conditions

 Validates the solution (program) by trying it on test data

