- Previous Lecture:
- Iteration using for
- Today's Lecture:
- Details on for-loop
- Iteration using while
- Review loop \& conditionals using graphics
- Announcements:
- P2 will be due Thurs Sept 18 at IIpm
- We do not use break in this course

Syntax of the for loop

for <var>= <start value>:<incr>:<end bound>
statements to be executed repeatedly
end

Loop header specifies all the values that the index variable will take on, one for each pass of the loop.
E.g, $k=3: 1: 7$ means k will take on the values $3,4,5,6$, 7, one at a time.

Pattern for doing something n times

$n=$
for $k=1: 1: n$

\% code to do
 \% that something

end
Definite iteration
\% What will be printed?
for $k=10:-1: 14$ fprintf("\%d ', k) end fprintf("!')

What will be displayed when you run the following script?

for $k=4: 6$
 disp(k)
 k= 9; disp(k)
 end

for $k=4: 6$ disp(k)
 k= 9; disp(k)
 end

With this loop header, k "promises" to be these values, one at a time

Output in Command Window

for $k=4: 6$

4	5	6

disp(k) 4
k= 9; disp(k)
end

Output in Command Window

for $k=4: 6$ disp(k) k= 9; disp(k) end

4	5	6

Output in Command Window

for $k=4: 6$ disp(k) \downarrow k= 9; disp(k) end

4	5	6

Output in Command Window

for $k=4: 6 \sim$ Not a condition (boolean expression) disp(k) k= 9; disp(k) that checks whether $k<=6$.

It is an expression that specifies values:

end
for-loop header is executed only once! (Loop body is may be executed multiple times)

Example: n-gon \rightarrow circle

Inscribed hexagon $(n / 2) \sin (2 \pi / n)$

Circumscribed hexagon $n \tan (\pi / n)$

As n approaches infinity, the inscribed and circumscribed areas approach the area of a circle. When will |OuterA - InnerA| <= . 00000 I?

Find n such that outer A and inner A converge

First, itemize the tasks:

- define how close is close enough
- select an initial n
- calculate inner A, outer A for current n
- diff= outer A - inner A
- close enough?
- if not, increase n, repeat above tasks

Find n such that outer A and inner A converge
Now organize the tasks \rightarrow algorithm:
n gets initial value

Repeat until difference is small:
increase n
calculate inner A, outer A for current n $\operatorname{diff}=$ outer $A-\operatorname{inner} A$

Find n such that outer A and inner A converge
Now organize the tasks \rightarrow algorithm:
n gets initial value
innerA, outerA get initial values
Repeat until difference is small:
increase n
calculate inner A, outer A for current n $\operatorname{diff}=$ outer $A-\operatorname{inner} A$

Find n such that outer A and inner A converge
n gets initial value
calculate inner A, outer A for current n
while <difference is not small enough> increase n
calculate inner A, outer A for current n diff= outer A - inner A
end

Guard against infinite loop

Use a loop guard that guarantees termination of the loop. Or just limit the number of iterations.

while (B_n-A_n >delta \&\& n<nMax)

Eg2_2.m

Another use of the while-loop: user interaction

- Example: Allow a user to repeatedly calculate the inscribed and circumscribed areas of n-gons on a unit circle.
- Need to define a "stopping signal"

Common loop patterns

Do something n times

Do something an indefinite number of times

Important Features of Iteration

- A task can be accomplished if some steps are repeated; these steps form the loop body
- Need a starting point
- Need to know when to stop
- Need to keep track of (and measure) progress

In Matlab, which claim is true? (without break)

A:
for-loop can do anything while-loop can do
while-loop can do anything for-loop can do
for- and while-loops can do the same things

Common loop patterns

Do something n times

Do something an indefinite number of times

Pattern to do something n times

for-loop or while-loop: that is the question

- for-loop: loop body repeats a fixed (predetermined) number of times.
- while-loop: loop body repeats an indefinite number of times under the control of the "loop guard."

Review loops/conditionals using user-defined graphics function

Draw a black square;
then draw a magenta disk;
then draw a yellow star.

Color Options

A simple 3-line script

DrawRect(...) DrawDisk(...) DrawStar(...)

\% drawDemo
 close all
 figure
 axis equal off
 hold on

DrawRect(0, 0, 2, 2, 'k')
DrawDisk(1, 1, 1, 'm')
$\operatorname{DrawStar}\left(1,1,1, y^{\prime}\right)$
hold off

A general graphics framework

\% drawDemo
 close all
 figure
 axis equal off
 hold on

Code fragment to draw the objects (rectangle, disk, star)

hold off

Example: Nested Stars

