
CS1112 Lecture 27

Lecture slides 1

 Previous Lecture:
 Linear search, binary search
 Insertion sort
 (Reading: Bubble Sort)

 Today’s Lecture:
 Merge Sort
 What’s next?

 Announcements
 P6 due Thursday at 11pm
 Final exam: Dec 17th 7pm, Barton Indoor Track WEST

Lecture 27 3

Announcements

 P6 due Thursday at 11pm
 Final exam:

 Dec 17th, 7pm, Barton Hall Indoor Track WEST

 Please fill out course evaluation on-line, see
“Exercise 16”

 Revised office/consulting hours
 Pick up papers during consulting hours at

Carpenter
 Read announcements on course website!

Linear search and binary search

 Linear search
 “Effort” is linearly proportional to n, the size of the

search space (e.g., the length of the vector)
 Can represent effort by the number of comparisons

against the search target done during the search

 Binary search
 Effort is proportional to log2(n) where n is the size

of the search space

 Saving of log2(n) over n is significant when n is
large! But binary search requires sorted vector

Lecture 27 4 Lecture 27 5

Binary search is efficient, but we need to sort the
vector in the first place so that we can use binary
search

 Many different algorithms out there...
 We saw insertion sort (and read about bubble

sort)
 Let’s look at merge sort
 An example of the “divide and conquer”

approach using recursion

Motivation

What if those two helpers
each had two sub-helpers?

If I have two helpers, I’d…
• Give each helper half the array to

sort
• Then I get back the sorted

subarrays and merge them.

And the sub-helpers each had
two sub-sub-helpers? And…

Lecture 27 11

Subdivide the sorting task

J NR CP DF LA QB KM GH E

A QB KM GH E J NR CP DF L

CS1112 Lecture 27

Lecture slides 2

Lecture 27 14

And one last time

J NR CP DF LA QB KM GH E
Lecture 27 15

Now merge

G ME H A QB K D PF L J NC R

J NR CP DF LA QB KM GH E

Lecture 27 21

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 27 22

The central sub-problem is the merging of two
sorted arrays into one single sorted array

12 33 4535

15 42 6555 75

12 15 3533 42 45 55 7565

12 33 4535

15 42 6555 75

x:

y:

z:

1

1

1

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

12 33 4535

15 42 6555 75

12

x:

y:

z:

2

1

2

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

CS1112 Lecture 27

Lecture slides 3

12 33 4535

15 42 6555 75

12 15

x:

y:

z:

2

2

3

ix:

iy:

iz:

Merge

ix<=4 and iy<=5: x(ix) <= y(iy) ???

function z = merge(x,y)
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx && iy<=ny

if x(ix) <= y(iy)
z(iz)= x(ix); ix=ix+1; iz=iz+1;

else
z(iz)= y(iy); iy=iy+1; iz=iz+1;

end
end
while ix<=nx % copy remaining x-values

z(iz)= x(ix); ix=ix+1; iz=iz+1;
end
while iy<=ny % copy remaining y-values

z(iz)= y(iy); iy=iy+1; iz=iz+1;
end

Lecture 27 51

function y=mergeSort(x)

n=length(x);

if n==1

y=x;

else

m=floor(n/2);

yL=mergeSort(x(1:m));

yR=mergeSort(x(m+1:n));

y=merge(yL,yR);

end

Lecture 24 55

How do merge sort, insertion sort, and bubble sort compare?

 Insertion sort and bubble sort are similar
 Both involve a series of comparisons and swaps
 Both involve nested loops

 Merge sort uses recursion

See InsertionSort.m

Lecture 24 58

How do merge sort and insertion sort compare?

 Insertion sort: (worst case) makes k comparisons
to insert an element in a sorted array of k
elements. For an array of length N:

____________________ for big N

 Merge sort: ___________________

 Insertion sort is done in-place; merge sort
(recursion) requires much more memory

Lecture 24 60

function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.

n = length(x);
if n==1

y = x;
else

m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

All the comparisons between
vector values are done in merge

CS1112 Lecture 27

Lecture slides 4

Lecture 24 61

function z = merge(x,y)
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
while ix<=nx && iy<=ny

if x(ix) <= y(iy)
z(iz)= x(ix); ix=ix+1; iz=iz+1;

else
z(iz)= y(iy); iy=iy+1; iz=iz+1;

end
end
while ix<=nx % copy remaining x-values

z(iz)= x(ix); ix=ix+1; iz=iz+1;
end
while iy<=ny % copy remaining y-values

z(iz)= y(iy); iy=iy+1; iz=iz+1;
end

Lecture 24 63

Merge sort: log2(N) “levels”; N comparisons each level

J NR CP DF LA QB KM GH E

Lecture 24 65

How to choose??

 Depends on application
 Merge sort is especially good for sorting large

data set (but watch out for memory usage)
 Insertion sort is “order N2” at worst case, but

what about an average case? If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Lecture 24 66

Why not just use Matlab’s sort function?

 Flexibility
 E.g., to maintain a sorted list, just write the code for

insertion sort
 E.g., sort strings or other complicated structures
 Sort according to some criterion set out in a function

file
 Observe that we have the comparison x(j+1)<x(j)

 The comparison can be a function that returns a boolean value

 Can combine different sort/search algorithms for
specific problem

ENGRG/CS 2110 OOP and Data Structures

 Learn new programming concepts and further
explores those you’ve seen in CS1112
 OOP, program design and development
 Recursion
 Complex data structures and related algorithms

 Taught in Java
 Optional CS 2111 meets 1 hr/week; additional

practice with OOP, Java, and other course topics
 During break, check out this website:

http://www.cs.cornell.edu/courses/CS1130/2014sp/
Lecture 27 68

We’ve reached the end of CS1112… now what?

 Continue practicing your problem solving—
problem decomposition—skills, in programming
and other arenas!

 Interested in further study?
 ENGRD/CS 2110 Object-oriented programming and

data structure
 Short courses in Python (CS 1133), C++ (CS 2024),

…, etc.
 More general CS courses: CS 2800 Discrete

structures, CS 2850 Networks

Lecture 27 69

CS1112 Lecture 27

Lecture slides 5

Lecture 27 70

What we learned…

 Develop/implement algorithms for problems
 Develop programming skills

 Design, implement, document, test, and debug

 Programming “tool bag”
 Functions for reducing redundancy
 Control flow (if-else; loops)
 Recursion
 Data structures
 Graphics
 File handling

Lecture 27 71

What we learned… (cont’d)

 Applications and concepts
 Image processing
 Object-oriented programming
 Sorting and searching—you should know the

algorithms covered
 Divide-and-conquer strategies
 Approximation and error
 Simulation
 Computational effort and efficiency

Computing gives us insight into a problem

 Computing is not about getting one answer!
 We build models and write programs so that we can

“play” with the models and programs, learning—gaining
insights—as we vary the parameters and assumptions

 Good models require domain-specific knowledge (and
experience)

 Good programs …
 are modular and cleanly organized
 are well-documented
 use appropriate data structures and algorithms
 are reasonably efficient in time and memory

Lecture 27 72 Lecture 27 75

Final Exam

 Dec 17, 7-9:30pm, Barton Hall indoor tracks WEST
 Covers entire course; some emphasis on material after

Prelim 2
 Closed-book exam, no calculators
 Bring student ID card

 Check for announcements on webpage:
 Study break office/consulting hours
 Review session time and location
 Review questions
 List of potentially useful functions

Lecture 27 76

Final Exam

 Dec 17, 7-9:30pm, Barton Hall indoor tracks WEST
 Covers entire course; some emphasis on material after

Prelim 2
 Closed-book exam, no calculators
 Bring student ID card

 Check for announcements on webpage:
 Study break office/consulting hours
 Review session time and location
 Review questions
 List of potentially useful functions

