CS1112 Lecture 27

= Previous Lecture:
= Linear search, binary search
= Insertion sort
= (Reading: Bubble Sort)

= Today’s Lecture:
= Merge Sort
= What's next?

= Announcements
= P6 due Thursday at | Ipm
= Final exam: Dec 17t 7pm, Barton Indoor Track WEST

Announcements

P6 due Thursday at | Ipm
Final exam:
= Dec 7%, 7pm, Barton Hall Indoor Track WEST

Please fill out course evaluation on-line, see
“Exercise 16”

= Revised office/consulting hours

m Pick up papers during consulting hours at
Carpenter

m Read announcements on course website!

Lecture 27 3

Linear search and binary search

m Linear search

= “Effort” is linearly proportional to n, the size of the
search space (e.g., the length of the vector)

= Can represent effort by the number of comparisons
against the search target done during the search

= Binary search

= Effort is proportional to log,(n) where n is the size
of the search space

m Saving of log,(n) over n is significant when n is
large! But binary search requires sorted vector

Lecture 27 4

Binary search is efficient, but we need to sort the
vector in the first place so that we can use binary
search

= Many different algorithms out there...

= We saw insertion sort (and read about bubble
sort)

= Let’s look at merge sort

= An example of the “divide and conquer”
approach using recursion

Lecture 27 5

Motivation

What if those two helpers
each had two sub-helpers?

) And the sub-helpers each had
two sub-sub-helpers? And..

Lecture slides

Subdivide the sorting task

[lefufelefafofF]fr]ofr]c]a]n]

[Hlelv]efelxfa]e] [F]-]Pfe]rRIc]a]N]

Lecture 27 1

CS1112 Lecture 27

And one last time

HEpENENIERRENIEERENEE
L0E] I (0] I BT E

eeeeee 27

Now merge

ElH] fe]v] [elx] [ale] [FI] [o]P] [cIR] [2IN]

eeeeee

function y = mergeSort(x)

% x Is a vector. y is a vector

% consisting of the values in X

% sorted from smallest to largest.

n = length(x);

The central sub-problem is the merging of two
sorted arrays into one single sorted array

EIEIEIE

|15|42|55|65|75|

|12|15|33|35|42|45|55|65|75|

if n==1
y = X3
else
m = Floor(n/2);
yL = mergeSort(x(1:m));
YR = mergeSort(x(m+1:n));
y = merge(yL,yR);
end
Merge
4
x: [12] %[5]38 x:[I]
4
y:[15]42]55[65][75] iy:[1]
4

N
-
N

H

iXx<=4 and i1y<=5: x(ix) <= y(iy) ???

Merge

|
« [2]
1 |
y:[15[42]55]65[75] iy:[1]

4
2: [T iz 2]

ix<=4 and iy<=5: x(ix) <= y(iy) ???

Lecture slides

CS1112 Lecture 27

Merge

1 !
1 |
y:[15]42]55]65]75] iy:[2]

4
2 [T i3]

ix<=4 and iy<=5: x(ix) <= y(iy) ???

function z = merge(X,y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
ix =1; iy = 1; iz = 1;
while ix<=nx && iy<=ny
it x(ix) <= y(iy)
z(1z)= x(ix); ix=ix+l; iz=iz+l;
else
z(iz)= y(iy); iy=iy+l; iz=iz+l;
end
end
while ix<=nx % copy remaining x-values
z(iz)= x(ix); Ix=ix+l; iz=iz+l;
end
while iy<=ny % copy remaining y-values
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;
end

function y=mergeSort(x)

n=length(x);
if n==1
y=X;
else st
—1 Y
m=Floor(n/2); "'”ﬂ"jwt <
yL=mergeSort(x(1:m)); (2 2 ¢ ¥ & = 2

yR=mergeSort(x(n+1:n)); (ms1) l l
y=merge(yL,yR);

Lecture 27 51

How do merge sort, insertion sort, and bubble sort compare?

= Insertion sort and bubble sort are similar
= Both involve a series of comparisons and swaps
= Both involve nested loops

] Merge sort uses recursion

See InsertionSort.m

Lecture 24 55

How do merge sort and insertion sort compare!

= Insertion sort: (worst case) makes k comparisons
to insert an element in a sorted array of k
elements. For an array of length N:

for big N

= Merge sort:

= Insertion sort is done in-place; merge sort
(recursion) requires much more memory

Lecture 24 58

Lecture slides

function y = mergeSort(x)

% x Is a vector. y is a vector

% consisting of the values in X

% sorted from smallest to largest.

n = length(x);

All the comparisons between

if n==1 vector values are done in merge
y = X3
else
m =
yL =
YR =
y = merde(yL,yR);
end

Lecture 24 60

CS1112 Lecture 27

function z = merge(X,y)
nx = length(x); ny = length(y);
z = zeros(1l, nx+ny);
ix =1; iy = 1; iz = 1;
while ix<=nx && iy<=ny
X(x) <= y(y)
= x(ix);

else

z(iz)= y(iy); 1iy=iy+l; iz=iz+l;
end

end

while ix<=nx % copy remaining x-values
z(iz)= x(ix); ix=ix+l; iz=iz+l;

end

while iy<=ny % copy remaining y-values
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;

end

Lecture 24 61

Merge sort: log,(N) “levels”; N comparisons each level

HENEEEEEEEEEEEEER
Lt ity CEPTPTiT]

ENEEpEEEEEREEEEREEEE

HEEpENIENIENRENIEEREE NN
[FIE] [90e0 (0T [210e] (EIE] PO0e] (R[]

Lecture 24 63

How to choose??

= Depends on application

= Merge sort is especially good for sorting large
data set (but watch out for memory usage)

= Insertion sort is “order N?” at worst case, but
what about an average case! If the application
requires that you maintain a sorted array,
insertion sort may be a good choice

Lecture 24 65

Why not just use Matlab’s sort function?

= Flexibility

= E.g, to maintain a sorted list, just write the code for
insertion sort

= E.g, sort strings or other complicated structures

= Sort according to some criterion set out in a function
file
= Observe that we have the comparison X(J+1)<x(j)
= The comparison can be a function that returns a boolean value

= Can combine different sort/search algorithms for
specific problem

Lecture 24 66

ENGRG/CS 2110 OOP and Data Structures

m Learn new programming concepts and further
explores those you've seen in CS1112
= OOP, program design and development
= Recursion
= Complex data structures and related algorithms
= Taught in Java
= Optional CS 21 | | meets | hr/week; additional
practice with OOP, Java, and other course topics
= During break, check out this website:
http://www.cs.cornell.edu/courses/CS|130/2014sp/

Lecture 27 68

We've reached the end of CS1112... now what?

= Continue practicing your problem solving—
problem decomposition—skills, in programming
and other arenas!

= Interested in further study?

= ENGRD/CS 2110 Object-oriented programming and
data structure

= Short courses in Python (CS [133), C++ (CS 2024),
..., etc.

= More general CS courses: CS 2800 Discrete
structures, CS 2850 Networks

Lecture 27 69

Lecture slides

CS1112 Lecture 27

What we learned...

= Develop/implement algorithms for problems
= Develop programming skills

= Design, implement, document, test, and debug
= Programming “tool bag”

= Functions for reducing redundancy

= Control flow (if-else; loops)

= Recursion

= Data structures

= Graphics

= File handling

Lecture 27 70

What we learned... (conrq)

= Applications and concepts
= Image processing
= Object-oriented programming

= Sorting and searching—you should know the
algorithms covered

= Divide-and-conquer strategies

= Approximation and error

= Simulation

= Computational effort and efficiency

Lecture 27 7

Computing gives us insight into a problem

= Computing is not about getting one answer!
= We build models and write programs so that we can
“play”” with the models and programs, learning—gaining
insights—as we vary the parameters and assumptions
= Good models require domain-specific knowledge (and
experience)
= Good programs ...
= are modular and cleanly organized
= are well-documented
= use appropriate data structures and algorithms
= are reasonably efficient in time and memory

Lecture 27 72

Final Exam

= Dec 17, 7-9:30pm, Barton Hall indoor tracks WEST

= Covers entire course; some emphasis on material after
Prelim 2

m Closed-book exam, no calculators
= Bring student ID card

s Check for announcements on webpage:
= Study break office/consulting hours
= Review session time and location
= Review questions
= List of potentially useful functions

Lecture 27 75

Final Exam

» Dec 17, 7-9:30pm, Barton Hall indoor tracks WEST

= Covers entire course; some emphasis on materia!~*
Prelim 2

= Closed-book exam. - 2 es
u Rri- 665t W‘5\1

|
our exam>

an \
+h al y
ooé \uck with :
oist of potentiail; useful functions

Lecture 27 76

Lecture slides

