```
- Previous Lecture:
    - Recursion
- Today's Lecture:
    - Sorting and searching
        - Insertion sort, linear search
        - Read about Bubble Sort in Insight
    - "Divide and conquer" strategies
        - Binary search, merge sort
- Announcements
    - Discussion in Upson B7 lab this week
    - P6 due Thursday at II lpm
    - Final exam: Dec 17 7h 7pm, Barton Indoor Track WEST
```


The Insertion Process

- Given a sorted array x, insert a number y such that the result is sorted

Leture 26

Sort vector \mathbf{X} using the Insertion Sort algorithm

Need to start with a sorted subvector. How do you find one?
Length I subvector is "sorted"
Insert $\mathrm{x}(2):[\mathrm{x}(1: 2), \mathrm{C}, \mathrm{S}]=\operatorname{Insert}(\mathrm{x}(1: 2))$
Insert $x(3):[x(1: 3), C, S]=\operatorname{Insert}(x(1: 3))$
Insert $x(4):[x(1: 4), C, S]=\operatorname{Insert}(x(1: 4))$
Insert $x(5):[x(1: 5), C, S]=\operatorname{Insert}(x(1: 5))$
Insert $x(6):[x(1: 6), C, S]=\operatorname{Insert}(x(1: 6))$
InsertionSort.m

Insertion Sort vs. Bubble Sort

- Read about Bubble Sort in Insight §8.2
- Both algorithms involve the repeated comparison of adjacent values and swaps
- Find out which algorithm is more efficient on average

```
function x = InsertionSortInplace(x)
% Sort vector x in ascending order with insertion sort
n = length(x)
for i= 1:n-1
        % Sort x(1:i+1) given that x(1:i) is sorted
        j= 1;
        while
        % swap x(j+1) and x(j)
        j= j-1;
        end
end
```


Other efficiency considerations

- Worst case, best case, average case
- Use of subfunction incurs an "overhead"
- Memory use and access
- Example: Rather than directing the insert process to a subfunction, have it done "in-line."
- Also, Insertion sort can be done "in-place," i.e., using "only" the memory space of the original vector.

Sort an array of objects

- Given x, a I-d array of Interval references, sort x according to the widths of the Intervals from narrowest to widest
- Use the insertion sort algorithm
- How much of our code needs to be changed?

Searching for an item in an unorganized collection?

- May need to look through the whole collection to find the target item
- E.g., find value x in vector v

- Linear search

```
% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x
    k= k + 1;
end
if k>length(v)
    l}\begin{array}{l}{k>length(v)}\\{f=-1; % signal for x no a sorted list should}\\{\mathrm{ searchire less work}}
else
    f= k;
end
```


Key idea of "phone book search": repeated halving
To find the page containing Pat Reed's number...
while (Phone book is longer than I page)
Open to the middle page.
if "Reed" comes before the first entry,
Rip and throw away the $2^{\text {nd }}$ half.
else
Rip and throw away the ${ }^{\text {st }}$ half.
end
end

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.
\% Linear Search
\% f is index of first occurrence of value x in vector v.
\% f is -1 if x not found.
$\mathrm{k}=1$
while $k<=$ length($v) \& \& v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if $k>$ length(v)
$\mathrm{f}=-1$; $\%$ signal for x not found
else
$f=k ;$
end

Binary Search
Repeatedly halving the size of the "search space" is
the main idea behind the method of binary search.
An item in a sorted array of length n can be
located with just log n comparisons.
"Savings" is significant!
$\qquad$$n$ $\log 2(n)$ 100 7 1000 10

Binary search: target $\mathrm{x}=70$

function $L=\operatorname{binarySearch}(x, v)$
\% Find position after which to insert x. v(1)<...<v(end).
\% L is the index such that $v(L)<=x<v(L+1)$;
\% L=0 if $x<v(1)$. If $x>v(e n d), L=l e n g t h(v)$ but $x \sim=v(L)$.
\% Maintain a search window [L..R] such that $v(L)<=x<v(R)$
$\%$ Since x may not be in v, initially set ...
L=0; R=length(v)+1
\% Keep halving [L..R] until R-L is 1,
\% always keeping $\mathrm{v}(\mathrm{L})<=\mathrm{x}<\mathrm{v}(\mathrm{R})$
while $\mathrm{R} \sim=\mathrm{L}+1 \mathrm{n}$
$\mathrm{m}=\mathrm{floor}((\mathrm{L}+\mathrm{R}) / 2)$; \% middle of search window
if
else
end
end

Binary search is efficient, but we need to sort the vector in the first place so that we can use binary search

- Many different algorithms out there...
- We saw insertion sort (and read about bubble sort)
- Let's look at merge sort
- An example of the "divide and conquer" approach using recursion

Now merge


```
function y = mergeSort(x)
% x is a vector. y is a vector
% consisting of the values in x
% sorted from smallest to largest.
n = length(x);
if n==1
        y = x;
else
    m = floor(n/2);
    yL = mergeSort(x(1:m));
    yR = mergeSort(x(m+1:n));
    y = merge(yL,yR);
end
```

The central sub-problem is the merging of two sorted arrays into one single sorted array

15	42	55	65	75

12	15	33	35	42	45	55	65	75


```
```

function z = merge(x,y)

```
```

function z = merge(x,y)
nx = length(x); ny = length(y);
nx = length(x); ny = length(y);
z = zeros(1, nx+ny);
z = zeros(1, nx+ny);
ix = 1; iy = 1; iz = 1;
ix = 1; iy = 1; iz = 1;
while ix<=nx \&\& iy<=ny
while ix<=nx \&\& iy<=ny
if x(ix) <= y(iy)
if x(ix) <= y(iy)
z(iz)= x(ix); ix=ix+1; iz=iz+1;
z(iz)= x(ix); ix=ix+1; iz=iz+1;
else
else
z(iz)= y(iy); iy=iy+1; iz=iz+1;
z(iz)= y(iy); iy=iy+1; iz=iz+1;
end
end
end
end
while ix<=nx % copy remaining x-values
while ix<=nx % copy remaining x-values
z(iz)= x(ix); ix=ix+1; iz=iz+1;
z(iz)= x(ix); ix=ix+1; iz=iz+1;
end
end
while iy<=ny % copy remaining y-values
while iy<=ny % copy remaining y-values
z(iz)= y(iy); iy=iy+1; iz=iz+1;
z(iz)= y(iy); iy=iy+1; iz=iz+1;
end

```
```

end

```
```

