CS1112 Lecture 27

= Previous Lecture:
= Recursion

= Today’s Lecture:
= Sorting and searching
= Insertion sort, linear search
= Read about Bubble Sort in Insight
= “Divide and conquer” strategies
= Binary search, merge sort

= Announcements
= Discussion in Upson B7 lab this week
= P6 due Thursday at | Ipm
= Final exam: Dec |7t 7pm, Barton Indoor Track WEST

Sorting data allows us to search more easily

Albert.Fat
Mlan_Wong *
Anderson, Bruce ..
| Anin . Boston Marathon Top Women Finishers
—i w:‘l)‘ *::‘%“ i Official Time _ State Country _ Ctz
pibar, b : e
m: ;’ar:‘: " . 226:34 KEN
[Beyss, Michoel . 22812 LAT
Blank . Frederick . 22948 ETH
| |8hss, Brion = 15 23052 m
7 F12 Ola, Nuta 23356 ROM
8 F6 Guta, Robe Tola 23437 ETH
I F1 Grigoryeva, Lidya 23537 RUS
Name Score | Grade F35 Hood, Stephanie A. 244:44 [UsA CcAN
Jorge 921 F14 Robson, Denise C. 245:54 NS CAN
A 915 F11 Chemjor, Magdaline 246:25 KEN
Fl01 . Firaya 24747 FL UsA RUS
Oluban 90.6 F15 Mayger, Eliza M 247:36 AUS
Chi 88.9 F24 Anidam, Ashley A 24843 MN UsA
Minale 88.1

There are many algorithms for sorting

m Insertion Sort (to be discussed today)
= Bubble Sort (read Insight §8.2)
] Merge Sort (to be discussed Thursday)

L] QUiCk Sort (a variant used by Matlab’s built-in SOrt function)

= Each has advantages and disadvantages. Some
algorithms are faster (time-efficient) while others are
memory-efficient

» Great opportunity for learning how to analyze programs and
algorithms!

Lecture 26 6

The Insertion Process

= Given a sorted array x, insert a number y such
that the result is sorted

sorted ‘/‘

Lecture 26 7

Insertion

onhe insert |
process

one insert |
process

Compare adjacent components:
DONE! No more swaps.

See Insert.m for the insert process

Lecture 26 13

Lecture slides

Sort vector X using the Insertion Sort algorithm
Need to start with a sorted subvector. How do you find one?

X
Length | subvector is “sorted”
Insert x(2): [x(1:2),C,S] = Insert(x(1:2))
Insert x(3): [x(1:3),C,S] = Insert(x(1:3))
Insert x(4): [x(1:4),C,S] = Insert(x(1:4))
Insert x(5): [x(1:5),C,S] = Insert(x(1:5))
Insert x(6): [x(1:6),C,S] = Insert(x(1:6))

InsertionSort.m

Lecture 26 14

CS1112 Lecture 27

Insertion Sort vs. Bubble Sort

= Read about Bubble Sort in Insight §8.2

= Both algorithms involve the repeated comparison
of adjacent values and swaps

= Find out which algorithm is more efficient on
average

Lecture 26 15

Other efficiency considerations

= Worst case, best case, average case
= Use of subfunction incurs an “overhead”
= Memory use and access

m Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

= Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

Lecture 26 17

function x = InsertionSortinplace(x)
% Sort vector x in ascending order with insertion sort

n = length(x);

for i= 1:n-1
% Sort x(1:i+1) given that x(1:i) is sorted
i=1i;
while

% swap x(J+1) and x(j)

end

Lecture 26 30

Sort an array of objects

= Given x, a |-d array of Interval references, sort x
according to the widths of the Intervals from
narrowest to widest

= Use the insertion sort algorithm
= How much of our code needs to be changed?

IIA. No change

|B. One statement

| C. About half the code

H D. Most of the code

Lecture 26 37

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

Lecture 27 39

Searching for an item in an unorganized collection?

= May need to look through the whole collection
to find the target item

= E.g, find value x in vector v

v [
x

m Linear search

Lecture 27 40

Lecture slides

CS1112 Lecture 27

% Linear Search
% ¥ is index of first occurrence

% of value x in vector v.
% F is -1 if x not found.

k= 1;
while k<=length(v) && v(k)~=x _—\
k= k + 1; — o\

g _ (1AL B e
if kelength(v) \ 50(“36 \oss WO
= -1; % signal for x no® eq\j\(‘@//

else \
= k;
end v|[12]|15]33]35[42[45|
X What if v is sorted?

Lecture 27 a5

An ordered (sorted) list

The Manhattan phone
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries?

Lecture 27 48

Key idea of “phone book search”: repeated halving
To find the page containing Pat Reed’s number-...

while (Phone book is longer than | page)
Open to the middle page.
if “Reed” comes before the first entry,
Rip and throw away the 2" half.

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

After 12 rips: 1 page

Lecture 27 51

else
Rip and throw away the |t half.
end
end
Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log, n comparisons.

Lecture 27 52

Lecture slides

% Linear Search
% f is index of first occurrence of value x in vector v.

% f is -1 if x not found.

k= 1;
while k<=length(v) &&
k= k + 1;

end
it k>length(v)
f= -1; % signal for x not found
else
= k;
end

Lecture 27 53

CS1112 Lecture 27

Binary Search
Repeatedly halving the size of the “search space” is

the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log, n comparisons.

“Savings” is significant! n log2(n)
100 7
1000 10
10000 13

Lecture 27 54

Binary search: target x = 70

1 2 3 4 5 6 7 8 9 10 11 12

v|12|15|33|35|42|45|51|62|73|75|86|98|
1 1 1
L: v(Mid) <= x

Mid:
El So throw away the

R: left half...

Lecture 27 55

Binary search: target x = 70

12 3 4 5 6 7 8 9 10 11 12

v|12|15|33|35|42|45|51|62|73|75|86|98|
1 1 1

X < v(Mid)

So throw away the
right half...

Lecture 27 56

Binary search: target x = 70

12 3 4 5 6 7 8 9 10 11 12

v|12|15|33|35|42|45|51|62|73|75|86|98|
11

L: ﬂ Done because
Mid: [8] R-L =1

= [2]

Lecture 27 50

function L = binarySearch(x, v)

% Find position after which to insert x. v(1)<.<v(end).
% L is the index such that v(L) <= x < v(L+1);

% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

" Keep halving [L..R] until R-L is 1,

% always keeping v(L) <= x < v(R)

while R ~= L+1
m= Floor((L+R)/2); % middle of search window
if

else

end
d

Binary search is efficient, but we need to sort the
vector in the first place so that we can use binary
search

= Many different algorithms out there...

= We saw insertion sort (and read about bubble
sort)

= Let’s look at merge sort

= An example of the “divide and conquer”
approach using recursion

Lecture 27 66

Lecture slides

CS1112 Lecture 27

Merge sort: Motivation

What if those two helpers
each had two sub-helpers?

And the sub-helpers each had
two sub-sub-helpers? And..

Subdivide the sorting task

[leufelefafofr]frofr]c]a]n]

T ENEENEERFE PR REE D

Lecture 27 7

And one last time

HNEEEEEEEEEEREER
LT ril P irirl

HEpENIENEERENEERENIEN
FE OB EE B A EE BE BE

Now merge

HNEEEEEENEEEEEER
Lty it ititd

ElH] (o] [BIx] [r1o] [FIt] [oIPf [c1R] [IN]
(FIE] (] BT [200e]] PO (RO

And merge again

HNEEEEEEEEEEREER
LT ril P irirl

R aeEE BiEEkE (S

L] (o] elx] [Afe] O] [e1P] [efr] 3]V

Lecture 27 76

Lecture slides

function y = mergeSort(x)

% x is a vector. y is a vector

% consisting of the values in X

% sorted from smallest to largest.

n = length(x);

if n==1
y = X3

else
m = floor(n/2);
yL = mergeSort(x(1:m));
yR = mergeSort(x(m+1:n));
y = merge(yL,yR);

end

Lecture 27 81

CS1112 Lecture 27

The central sub-problem is the merging of two

. . Merge
sorted arrays into one single sorted array

i |
1 |

[15]42]55]65]75] y:[15]42]55]65]75] iy:[1]

[12]15]33]35]42]45]55]65]75] 2: [iz 2]

ix<=4 and iy<=5: x(ix) <= y(iy) ??7?

Merge Merge

! !
| !

y:[15]42]55[65]75] i y:[15[42]55]65]75] iy:[1]

4 4

X
[+]

<
[+]

223 2 1 1 I O I R L N 2: [iz:2]
ix<=4 and iy<=5: x(ix) <= y(iy) VYES ix<=4 and iy<=5: x(ix) <= y(iy) ???
function y=mergeSort(x)
function z = merge(X,y) n=length(x);
nx = length(x); ny = length(y); " "==$:X:
z = zeros(1l, nx+ny); else st
ix =1; iy = 1; iz = 1; S ek o
While iX<:nX && iy<:ny iR:mergeSort(x(m;lan); (ms1) : i e s
if x(ix) <= y(iy) y=merge(yL,yR); l ‘
z(iz)= x(ix); ixzix+l; iz=iz+1; end
else
z(iz)= y(iy); iy=iy+l; iz=iz+l;
end
end
while ix<=nx % copy remaining x-values
z(1z)= x(ix); Ix=ix+l; iz=iz+l;
end
while iy<=ny % copy remaining y-values
z(iz)= y(iy); 1iy=iy+l; iz=iz+l;
end

Lecture slides

