
 Previous Lecture:
 Recursion

 Today’s Lecture:
 Sorting and searching

 Insertion sort, linear search
 Read about Bubble Sort in Insight

 “Divide and conquer” strategies
 Binary search, merge sort

 Announcements
 Discussion in Upson B7 lab this week
 P6 due Thursday at 11pm
 Final exam: Dec 17th 7pm, Barton Indoor Track WEST

Lecture 26 4

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

In
di

an
a

Jo
ne

s
an

d
th

e
R

ai
de

rs
 o

f t
he

 L
os

t A
rk

Sorting data allows us to search more easily

Place Bib Name Official Time State Country Ctz

1 F7 Tune, Dire 2:25:25 ETH

2 F8 Biktimirova, Alevtina 2:25:27 RUS

3 F4 Jeptoo, Rita 2:26:34 KEN

4 F2 Prokopcuka, Jelena 2:28:12 LAT

5 F5 Magarsa, Askale Tafa 2:29:48 ETH

6 F9 Genovese, Bruna 2:30:52 ITA

7 F12 Olaru, Nuta 2:33:56 ROM

8 F6 Guta, Robe Tola 2:34:37 ETH

9 F1 Grigoryeva, Lidiya 2:35:37 RUS

10 F35 Hood, Stephanie A. 2:44:44 IL USA CAN

11 F14 Robson, Denise C. 2:45:54 NS CAN

12 F11 Chemjor, Magdaline 2:46:25 KEN

13 F101 Sultanova-Zhdanova, Firaya 2:47:17 FL USA RUS

14 F15 Mayger, Eliza M. 2:47:36 AUS

15 F24 Anklam, Ashley A. 2:48:43 MN USA

2008 Boston Marathon Top Women Finishers

Name Score Grade

Jorge 92.1

Ahn 91.5

Oluban 90.6

Chi 88.9

Minale 88.1

Bell 87 3

There are many algorithms for sorting

 Insertion Sort (to be discussed today)

 Bubble Sort (read Insight §8.2)

 Merge Sort (to be discussed Thursday)

 Quick Sort (a variant used by Matlab’s built-in sort function)

 Each has advantages and disadvantages. Some
algorithms are faster (time-efficient) while others are
memory-efficient

 Great opportunity for learning how to analyze programs and
algorithms!

Lecture 26 6

Lecture 26 7

The Insertion Process

 Given a sorted array x, insert a number y such
that the result is sorted

2 3 6 98

2 3 6 9 8

sorted

Lecture 26 8

2 3 6 9 8

2 3 6 98 Just swap 8 & 9

Insertion sorted

one insert
process

Insert 8 into the sorted segment

Lecture 26 9

2 3 6 98

2 3 6 9 8

2 3 6 98

Insertion

sorted

4

Insert 4 into the sorted segment

Lecture 26 10

42 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 9 & 4

Insertion

Lecture 26 11

4

2 3 6 98 4

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 8 & 4

Insertion

Lecture 26 12

4

2 3 6 98 4

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
swap 6 & 4

Insertion

Lecture 26 13

4

2 3 6 98 4

2 3 6 984

2 3 6 984

2 3 6 98

2 3 6 9 8

2 3 6 98

Compare adjacent components:
DONE! No more swaps.

Insertion

See Insert.m for the insert process

one insert
process

one insert
process

Lecture 26 14

Sort vector x using the Insertion Sort algorithm

Insert x(2): [x(1:2),C,S] = Insert(x(1:2))

x

Need to start with a sorted subvector. How do you find one?

Insert x(3): [x(1:3),C,S] = Insert(x(1:3))
Insert x(4): [x(1:4),C,S] = Insert(x(1:4))
Insert x(5): [x(1:5),C,S] = Insert(x(1:5))
Insert x(6): [x(1:6),C,S] = Insert(x(1:6))

Length 1 subvector is “sorted”

InsertionSort.m

Lecture 26 15

Insertion Sort vs. Bubble Sort

 Read about Bubble Sort in Insight §8.2
 Both algorithms involve the repeated comparison

of adjacent values and swaps
 Find out which algorithm is more efficient on

average

Lecture 26 17

Other efficiency considerations

 Worst case, best case, average case
 Use of subfunction incurs an “overhead”
 Memory use and access

 Example: Rather than directing the insert process
to a subfunction, have it done “in-line.”

 Also, Insertion sort can be done “in-place,” i.e.,
using “only” the memory space of the original
vector.

Lecture 26 29

function x = InsertionSortInplace(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted

end

Lecture 26 30

function x = InsertionSortInplace(x)
% Sort vector x in ascending order with insertion sort

n = length(x);
for i= 1:n-1

% Sort x(1:i+1) given that x(1:i) is sorted
j= i;

while

% swap x(j+1) and x(j)

j= j-1;

end
end

Sort an array of objects

 Given x, a 1-d array of Interval references, sort x
according to the widths of the Intervals from
narrowest to widest

 Use the insertion sort algorithm
 How much of our code needs to be changed?

Lecture 26 37

A. No change

B. One statement

C. About half the code

D. Most of the code

Sort an array of objects

 Given x, a 1-d array of Interval references, sort x
according to the widths of the Intervals from
narrowest to widest

 Use the insertion sort algorithm
 How much of our code needs to be changed?

Lecture 26 38

A. No change

B. One statement

C. About half the code

D. Most of the code See InsertionSortIntervals.m

Lecture 27 39

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

In
di

an
a

Jo
ne

s
an

d
th

e
R

ai
de

rs
 o

f t
he

 L
os

t A
rk

Lecture 27 40

Searching for an item in an unorganized collection?

 May need to look through the whole collection
to find the target item

 E.g., find value x in vector v

 Linear search

v

x

Lecture 27 41

% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

Lecture 27 42

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

12 1535 33 42 45v
x 31

Lecture 27 43

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

Suppose another vector is twice as long as v. The
expected “effort” required to do a linear search is …

A. squared

C. the same

B. doubled

D. halved

Lecture 27 44

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

12 1535 33 42 45v
x 31

Lecture 27 45

% Linear Search
% f is index of first occurrence
% of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

12 15 3533 42 45v
x 31 What if v is sorted?

Lecture 27 48

An ordered (sorted) list

The Manhattan phone
book has 1,000,000+
entries.

How is it possible to
locate a name by
examining just a tiny,
tiny fraction of those
entries?

Lecture 27 50

Key idea of “phone book search”: repeated halving

To find the page containing Pat Reed’s number…

while (Phone book is longer than 1 page)
Open to the middle page.
if “Reed” comes before the first entry,

Rip and throw away the 2nd half.
else

Rip and throw away the 1st half.
end

end

Lecture 27 51

What happens to the phone book length?

Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages

:
After 12 rips: 1 page

Lecture 27 52

Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log2 n comparisons.

Lecture 27 53

% Linear Search
% f is index of first occurrence of value x in vector v.
% f is -1 if x not found.
k= 1;
while k<=length(v) && v(k)~=x

k= k + 1;
end
if k>length(v)

f= -1; % signal for x not found
else

f= k;
end

Lecture 27 54

Binary Search

Repeatedly halving the size of the “search space” is
the main idea behind the method of binary search.

An item in a sorted array of length n can be
located with just log2 n comparisons.

“Savings” is significant! n log2(n)
100 7
1000 10
10000 13

Lecture 27 55

12 15 3533 42 45 51 7362 75 86 98

Binary search: target x = 70

v

L:

Mid:

R:

1

6

12

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Lecture 27 56

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

9

12

1 2 3 4 5 6 7 8 9 10 11 12

x < v(Mid)

So throw away the
right half…

Binary search: target x = 70

Lecture 27 57

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

6

7

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

Lecture 27 58

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12

v(Mid) <= x

So throw away the
left half…

Binary search: target x = 70

Lecture 27 59

12 15 3533 42 45 51 7362 75 86 98v

L:

Mid:

R:

8

8

9

1 2 3 4 5 6 7 8 9 10 11 12

Done because
R-L = 1

Binary search: target x = 70

function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<…<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m= floor((L+R)/2); % middle of search window
if

else

end
end

function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<…<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m= floor((L+R)/2); % middle of search window
if v(m) <= x

L= m;
else

R= m;
end

end

This version is different
from that in Insight

function L = binarySearch(x, v)
% Find position after which to insert x. v(1)<…<v(end).
% L is the index such that v(L) <= x < v(L+1);
% L=0 if x<v(1). If x>v(end), L=length(v) but x~=v(L).

% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;

% Keep halving [L..R] until R-L is 1,
% always keeping v(L) <= x < v(R)
while R ~= L+1

m= floor((L+R)/2); % middle of search window
if v(m) <= x

L= m;
else

R= m;
end

end

20 30 40 46 50 52 68 70
0 1 2 3 4 5 6 7 8 9

Play with showBinarySearch.m

