- Previous Lecture:
- Recursion
- Today's Lecture:
- Sorting and searching
- Insertion sort, linear search
- Read about Bubble Sort in Insight
- "Divide and conquer" strategies
- Binary search, merge sort
- Announcements
- Discussion in Upson B7 lab this week
- P6 due Thursday at I Ipm
- Final exam: Dec I7h 7pm, Barton Indoor Track WEST

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

Sorting data allows us to search more easily

There are many algorithms for sorting

- Insertion Sort (to be discussed today)
- Bubble Sort (read Insight §8.2)
- Merge Sort (to be discussed Thursday)
- Quick Sort (a variant used by Matlab's built-in sort function)
- Each has advantages and disadvantages. Some algorithms are faster (time-efficient) while others are memory-efficient
- Great opportunity for learning how to analyze programs and algorithms!

The Insertion Process

- Given a sorted array x, insert a number y such that the result is sorted

Insertion

one insert process

Insert 8 into the sorted segment

Just swap 8 \& 9

Insertion

2	3	6	9	8

sorted

2	3	6	8	9	4

Insert 4 into the sorted segment

Insertion

2	3	6	9	8

2	3	6	8	9

| 2 | 3 | 6 | 8 | 9 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- |\quad| Compare adjacent components: |
| :---: |
| swap 9 \& 4 |

Insertion

2	3	6	9	8

Compare adjacent components: swap 8 \& 4

Insertion

2	3	6	9	8

Compare adjacent components: swap 6 \& 4

Insertion

Compare adjacent components: DONE! No more swaps.

See Insert.m for the insert process

Sort vector \mathbf{X} using the Insertion Sort algorithm

Need to start with a sorted subvector. How do you find one?

\mathbf{X}

```
Length | subvector is "sorted"
Insert x(2):[x(1:2),C,S] = Insert(x(1:2))
Insert x(3):[x(1:3),C,S] = Insert(x(1:3))
Insert x(4):[x(1:4),C,S] = Insert(x(1:4))
Insert x(5): [x(1:5),C,S] = Insert(x(1:5))
Insert x(6):[x(1:6),C,S] = Insert(x(1:6))
```

InsertionSort.m

Insertion Sort vs. Bubble Sort

- Read about Bubble Sort in Insight §8.2
- Both algorithms involve the repeated comparison of adjacent values and swaps
- Find out which algorithm is more efficient on average

Other efficiency considerations

- Worst case, best case, average case
- Use of subfunction incurs an "overhead"
- Memory use and access
- Example: Rather than directing the insert process to a subfunction, have it done "in-line."
- Also, Insertion sort can be done "in-place," i.e., using "only" the memory space of the original vector.

function $x=$ InsertionSortInplace(x)

\% Sort vector x in ascending order with insertion sort

```
n = length(x);
for i= 1:n-1
    % Sort x(1:i+1) given that x(1:i) is sorted
```

end

```
function \(x=\) InsertionSortInplace(x)
\% Sort vector x in ascending order with insertion sort
n = length(x);
for \(\mathrm{i}=1: \mathrm{n}-1\)
        \% Sort \(x(1: i+1)\) given that \(x(1: i)\) is sorted
        j= i;
        while
            \% swap \(x(j+1)\) and \(x(j)\)
            j= j-1;
        end
end
```


Sort an array of objects

- Given x, a I-d array of Interval references, sort x according to the widths of the Intervals from narrowest to widest
- Use the insertion sort algorithm
- How much of our code needs to be changed?
A. No change
B. One statement
C. About half the code
D. Most of the code

Sort an array of objects

- Given x, a I-d array of Interval references, sort x according to the widths of the Intervals from narrowest to widest
- Use the insertion sort algorithm
- How much of our code needs to be changed?
A. No change
B. One statement
C. About half the code
D. Most of the code

The only change is in how we do the comparison!

See InsertionSortIntervals.m

Searching for an item in a collection

Is the collection organized?
What is the organizing scheme?

Searching for an item in an unorganized collection?

- May need to look through the whole collection to find the target item
- E.g., find value x in vector v

- Linear search
\% f is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
k= 1;
while $k<=$ length(v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if k>length(v)
f= -1; \% signal for x not found
else
$f=k ;$
end
\% Linear Search
\% f is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
k= 1;
while $k<=$ length(v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if k>length(v)
f= -1; \% signal for x not found
else

\% Linear Search
\% f is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
k= 1;
while $k<=$ length(v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if k>length(v)
f= -1; \% signal for x not found
else
$f=k ;$
end
Suppose another vector is twice as long as v . The expected "effort" required to do a linear search is ...
\% Linear Search
\% f is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
k= 1;
while $k<=$ length(v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if k>length(v)
f= -1; \% signal for x not found
else

\% Linear Search
\% f is index of first occurrence
\% of value x in vector v.
\% f is -1 if x not found.
k= 1;
while $k<=$ length (v) \&\& $v(k) \sim=x$
$\mathrm{k}=\mathrm{k}+1$;
end
if k>length(v)
$f=-1$; \% signal for x no a S
else
end $f=k$;

| $\mathbf{1 2}$ | 15 | 33 | 35 | $\mathbf{4 2}$ | $\mathbf{4 5}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{x} | $\mathbf{3 1}$ | What if v is sorted? | | | |

An ordered (sorted) list

The Manhattan phone book has I,000,000+

 entries.
How is it possible to locate a name by examining just a tiny, tiny fraction of those entries?

Key idea of "phone book search": repeated halving

To find the page containing Pat Reed's number...

What happens to the phone book length?
Original: 3000 pages
After 1 rip: 1500 pages
After 2 rips: 750 pages
After 3 rips: 375 pages
After 4 rips: 188 pages
After 5 rips: 94 pages
After 12 rips: 1 page

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.
\% Linear Search
\% f is index of first occurrence of value x in vector v.
$\% \mathrm{f}$ is -1 if x not found.
k= 1;
while $k<=$ length (v) \&\& v(k)~=x

$$
k=k+1
$$

end
if
k> length (v)
$\mathrm{f}=-1$; \% signal for x not found
else

$$
f=k ;
$$

end
I comparisons against the tar are needed in wo rs (v).

Binary Search

Repeatedly halving the size of the "search space" is the main idea behind the method of binary search.

An item in a sorted array of length n can be located with just $\log _{2} n$ comparisons.
"Savings" is significant!

n	$\log 2(n)$
100	7
1000	10
10000	13

Binary search: target $x=70$

Binary search: target $x=70$
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

$\mathrm{x}<\mathrm{v}($ Mid $)$

Mid:
9
R: 12

So throw away the right half...

Binary search: target $x=70$
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

v(Mid) <= x

Mid:

So throw away the left half...

Binary search: target $x=70$
$\begin{array}{llllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$

L: 7
v(Mid) <= x

Mid:

So throw away the left half...

Binary search: target $x=70$

function L = binarySearch(x, v)
\% Find position after which to insert $x . v(1)<. . .<v(e n d)$.
$\% \mathrm{~L}$ is the index such that $\mathrm{v}(\mathrm{L})<=\mathrm{x}<\mathrm{v}(\mathrm{L}+1)$;
\% L=0 if $x<v(1) . ~ I f ~ x>v(e n d), ~ L=l e n g t h(v)$ but $x \sim=v(L)$.
\% Maintain a search window [L..R] such that $v(L)<=x<v(R)$.
\% Since x may not be in v , initially set ...
L=0; R=length(v)+1;
Keep halving [L..R] until R-L is 1,
\% always keeping $v(L)<=x<v(R)$
while $\mathrm{R} \sim=\mathrm{L}+1$
$\mathrm{m}=\mathrm{floor}((\mathrm{L}+\mathrm{R}) / 2)$; \% middle of search window if
else
end
end
function L = binarySearch(x, v)
\% Find position after which to insert $x . v(1)<. . .<v(e n d)$.
$\% \mathrm{~L}$ is the index such that $\mathrm{v}(\mathrm{L})<=\mathrm{x}<\mathrm{v}(\mathrm{L}+1)$;
\% L=0 if $x<v(1) . ~ I f ~ x>v(e n d), ~ L=l e n g t h(v)$ but $x \sim=v(L)$.
\% Maintain a search window [L..R] such that $v(L)<=x<v(R)$.
\% Since x may not be in v , initially set ...
L=0; R=length(v)+1;
\% Keep halving [L..R] until R-L is 1,
\% always keeping $v(L)<=x<v(R)$
while R ~= L+1
$\mathrm{m}=\mathrm{floor}((\mathrm{L}+\mathrm{R}) / 2)$; \% middle of search window
if $v(m)<=x$
L= m;
else

$$
\mathrm{R}=\mathrm{m} \text {; }
$$

end
IThis version is different
I from that in Insight _ I
end
function L = binarySearch(x, v)
\% Find position after which to insert $x . v(1)<. . .<v(e n d)$.
\% L is the index such that $v(L)<=x<v(L+1)$;
\% L=0 if $x<v(1)$. If $x>v(e n d)$, L=length(v) but $x \sim=v(L)$.

```
% Maintain a search window [L..R] such that v(L)<=x<v(R).
% Since x may not be in v, initially set ...
L=0; R=length(v)+1;
```

\% Keep halving [L..R] until R-L is 1,
\% always keeping $v(L)<=x<v(R)$
while R ~= L+1
$\mathrm{m}=\mathrm{floor}((\mathrm{L}+\mathrm{R}) / 2)$; \% middle of search window
if $v(m)<=x$

 else L= m; \begin{tabular}{|c|c|c|c|c|c|c|c|}
 \hline 20 \& 30 \& 40 \& 46 \& 50 \& 52 \& 68 \& 70

\hline 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7

\hline
\end{tabular}

 R= m;
 end
 end
Play with showBinarySearch.m

