
 Previous Lecture:
 Inheritance in OOP
 Overriding methods

 Today’s Lecture:
 Recursion

 Remove all occurrences of a character in a string
 A mesh of triangles

 Announcements:
 Discussion in the lab this week. Attendance is optional

but be sure to do the posted exercise.
 Project 6 due Thurs Dec 4 at 11pm. Remember

academic integrity!
 Office/consulting hours end Tuesday (tonight) for

Thanksgiving Break and resume Monday

Lecture 26 2

Recursion

 The Fibonacci sequence is defined recursively:
F(1)=1, F(2)=1,
F(3)= F(1) + F(2) = 2
F(4)= F(2) + F(3) = 3

It is defined in terms of itself; its definition invokes
itself.

 Algorithms, and functions, can be recursive as well.
I.e., a function can call itself.

 Example: remove all occurrences of a character
from a string
‘gc aatc gga c ’ ‘gcaatcggac’

F(k) = F(k-2) + F(k-1)

Lecture 26 3

Example: removing all occurrences of a character

 Can solve using iteration—check one character
(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’
1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:
Divide problem
into sequence of
equal-sized,
identical
subproblems

See RemoveChar_loop.m

Example: removing all occurrences of a character
 Can solve using recursion

 Original problem: remove all the blanks in string s
 Decompose into two parts: 1. remove blank in s(1)

2. remove blanks in s(2:length(s))
Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’

Lecture 26 5

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else

end

Lecture 26 6

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c

else

end
end

Lecture 26 7

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else % s(1)==c

end
end

Lecture 26 8

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed

else % s(1)==c
% return string is just
% the remaining s with char c removed

end
end

Lecture 26 9

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else % s(1)==c
% return string is just
% the remaining s with char c removed

end
end

Lecture 26 10

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else % s(1)==c
% return string is just
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end

Lecture 26 11

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c
% return string is
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else % s(1)==c
% return string is just
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[]d

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

gg

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

ggo g

function s = removeChar(c, s)
if length(s)==0

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

ggo go g

d o g

Key to recursion

 Must identify (at least) one base case, the
“trivially simple” case
 no recursion is done in this case

 The recursive case(s) must reflect progress
towards the base case
 E.g., give a shorter vector as the argument to the

recursive call – see removeChar

Lecture 26 25

Divide-and-conquer methods, such as recursion,
is useful in geometric situations

Chop a region up into
triangles with smaller
triangles in “areas of
interest”

Recursive mesh generation

Lecture 26 28

Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic

Lecture 26 29

Start with a triangle

Lecture 26 30

A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white)
triangle to obtain the “level-2” partitioning

Lecture 26 31

The “level-2” partition of the triangle

Lecture 26 32

The “level-3” partition of the triangle

Lecture 26 33

The “level-4” partition of the triangle

Lecture 26 34

The “level-4” partition of the triangle

Lecture 26 35

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end

Lecture 26 36

Draw a level-4 partition of the triangle with these vertices

Lecture 26 37

At the start…

Lecture 26 38

Recur: apply the same process on the lower left triangle

Lecture 26 39

Recur again

Lecture 26 40

… and again

The next lower left corner triangle (white) is small—no more
subdivision and just color it yellow.

Lecture 26 41

Now lower left corner triangle of the “level-4” partition is
done. Continue with another corner triangle

Lecture 26 42

… and continue

Lecture 26 43

Now the lower left corner triangle of the “level-3” partition is
done. Continue with another corner triangle…

Lecture 26 44

Lecture 26 45

We’re “climbing our way out” of the deepest level of
partitioning

Lecture 26 46

Lecture 26 47

Lecture 26 48

Lecture 26 49

Lecture 26 50

Lecture 26 51

Lecture 26 52

Lecture 26 53

Eventually climb all the way out to get the final result

Lecture 26 54

The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide:
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end

Lecture 26 55

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end

Lecture 26 56

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end

Lecture 26 57

function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning. Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y') % Color this triangle yellow

else
% Need to subdivide: determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)

end

Key to recursion

 Must identify (at least) one base case, the
“trivially simple” case
 No recursion is done in this case

 The recursive case(s) must reflect progress
towards the base case
 E.g., give a shorter vector as the argument to the

recursive call – see removeChar
 E.g., ask for a lower level of subdivision in the

recursive call – see MeshTriangle

