
 Previous Lecture:
 Inheritance in OOP
 Overriding methods

 Today’s Lecture:
 Recursion 

 Remove all occurrences of a character in a string
 A mesh of triangles

 Announcements:
 Discussion in the lab this week.  Attendance is optional 

but be sure to do the posted exercise.
 Project 6 due Thurs Dec 4 at 11pm.  Remember 

academic integrity!
 Office/consulting hours end Tuesday (tonight) for 

Thanksgiving Break and resume Monday  
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Recursion

 The Fibonacci sequence is defined recursively:
F(1)=1,  F(2)=1,
F(3)= F(1) + F(2) = 2
F(4)= F(2) + F(3) = 3

It is defined in terms of itself; its definition invokes 
itself.  

 Algorithms, and functions, can be recursive as well.  
I.e., a function can call itself.

 Example:  remove all occurrences of a character 
from a string
‘gc aatc gga c ’  ‘gcaatcggac’

F(k) = F(k-2) + F(k-1)
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Example: removing all occurrences of a character

 Can solve using iteration—check one character 
(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’
1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:
Divide problem 
into sequence of 
equal-sized, 
identical 
subproblems

See RemoveChar_loop.m



Example: removing all occurrences of a character
 Can solve using recursion

 Original problem:  remove all the blanks in string s
 Decompose into two parts:  1. remove blank in s(1)

2. remove blanks in s(2:length(s))
Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else

end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c

else

end
end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c
% return string is 
% s(1) and remaining s with char c removed

else  % s(1)==c

end
end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c
% return string is 
% s(1) and remaining s with char c removed

else  % s(1)==c
% return string is just 
% the remaining s with char c removed

end
end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c
% return string is 
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else  % s(1)==c
% return string is just 
% the remaining s with char c removed

end
end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c
% return string is 
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else  % s(1)==c
% return string is just 
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end
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function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0  % Base case: nothing to do
return

else
if s(1)~=c
% return string is 
% s(1) and remaining s with char c removed
s= [s(1) removeChar(c, s(2:length(s)))];

else  % s(1)==c
% return string is just 
% the remaining s with char c removed
s= removeChar(c, s(2:length(s)));

end
end



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[       ]d



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’

g



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’

gg



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’

ggo g



function s = removeChar(c, s)
if length(s)==0 

return
else

if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[       ]d

removeChar – 2nd call
c _

_ o gs _

[       ]

removeChar – 3rd call
c _

o gs _

[       ]o

removeChar – 4th call
c _

gs _

[       ]

removeChar – 5th call
c _

gs

[       ]g

removeChar – 6th call
c _

s ‘’

‘’

ggo go g

d o g



Key to recursion

 Must identify (at least) one base case, the 
“trivially simple” case
 no recursion is done in this case

 The recursive case(s) must reflect progress 
towards the base case
 E.g., give a shorter vector as the argument to the 

recursive call – see removeChar
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Divide-and-conquer methods, such as recursion, 
is useful in geometric situations

Chop a region up into 
triangles with smaller 
triangles in “areas of 
interest”

Recursive mesh generation
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Why is mesh generation a divide-&-conquer process?

Let’s draw this graphic
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Start with a triangle
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A “level-1” partition of the triangle

(obtained by connecting the midpoints of the sides of the original triangle)

Now do the same partitioning (connecting midpts) on each corner (white) 
triangle to obtain the “level-2” partitioning
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The “level-2” partition of the triangle
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The “level-3” partition of the triangle
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The “level-4” partition of the triangle
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The “level-4” partition of the triangle
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end
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Draw a level-4 partition of the triangle with these vertices
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At the start…
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Recur:  apply the same process on the lower left triangle
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Recur again
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… and again

The next lower left corner triangle (white) is small—no more 
subdivision and just color it yellow.
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Now lower left corner triangle of the “level-4” partition is 
done.  Continue with another corner triangle
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… and continue
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Now the lower left corner triangle of the “level-3” partition is 
done.  Continue with another corner triangle…
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We’re “climbing our way out” of the deepest level of 
partitioning
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Eventually climb all the way out to get the final result
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The basic operation at each level

if the triangle is small
Don’t subdivide and just color it yellow.

else
Subdivide: 
Connect the side midpoints;
color the interior triangle magenta;
apply same process to each outer triangle.

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...

end
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function MeshTriangle(x,y,L)
% x,y are 3-vectors that define the vertices of a triangle.
% Draw level-L partitioning.  Assume hold is on.

if L==0
% Recursion limit reached; no more subdivision required.
fill(x,y,'y')  % Color this triangle yellow

else
% Need to subdivide:  determine the side midpoints; connect
% midpts to get “interior triangle”; color it magenta.
a = [(x(1)+x(2))/2 (x(2)+x(3))/2 (x(3)+x(1))/2];
b = [(y(1)+y(2))/2 (y(2)+y(3))/2 (y(3)+y(1))/2];
fill(a,b,'m')

% Apply the process to the three "corner" triangles...
MeshTriangle([x(1) a(1) a(3)],[y(1) b(1) b(3)],L-1)
MeshTriangle([x(2) a(2) a(1)],[y(2) b(2) b(1)],L-1)
MeshTriangle([x(3) a(3) a(2)],[y(3) b(3) b(2)],L-1)  

end



Key to recursion

 Must identify (at least) one base case, the 
“trivially simple” case
 No recursion is done in this case

 The recursive case(s) must reflect progress 
towards the base case
 E.g., give a shorter vector as the argument to the 

recursive call – see removeChar
 E.g., ask for a lower level of subdivision in the 

recursive call – see MeshTriangle


