
CS1112 Lecture 25 11/19/2014

1

• Previous lecture:
– Why use OOP?
– Attributes for properties and methods

• Today’s lecture:
– Inheritance: extending a superclass
– Overriding methods in superclass
– New topic: Recursion

• Announcement:
– Project 6 due on Dec 4th (Thurs) at 11pm.
– Remember academic integrity! We will check all

submissions using MOSS.
– Final exam on Wednesday, Dec 17th, at 7pm. Email Randy

Hess (rbh27) now if you have an exam conflict. Specify
your entire exam schedule (course numbers/contacts and
the exam times). We must have this information by
Monday Nov 24th.

Lecture 24 2

classdef Die < handle
properties (Access=private)
sides=6;
top
end
methods
function D = Die(…) …
function roll(…) …
function disp(…) …
function s = getSides(…) …
function t = getTop(…) …
end
methods (Access=private)
function setTop(…) …
end

end

A fair die is…

What about a trick die?

Lecture 24 5

classdef Die < handle
properties (Access=private)
sides=6;
top
end
methods
function D = Die(…) …
function roll(…) …
function disp(…) …
function s = getSides(…) …
function t = getTop(…) …
end
methods (Access=private)
function setTop(…) …
end

end

classdef TrickDie < handle

“Inherit” the components
of class Die

properties (Access=private)
favoredFace
weight=1;

end
methods
function D = TrickDie(…) …
function f =getFavoredFace(…) …
function w = getWeight(…) …

end
end

Can we get all the functionality of Die in TrickDie without re-
writing all the Die components in class TrickDie?

Lecture 24 6

classdef Die < handle
properties (Access=private)
sides=6;
top
end
methods
function D = Die(…) …
function roll(…) …
function disp(…) …
function s = getSides(…) …
function t = getTop(…) …
end
methods (Access=protected)
function setTop(…) …
end

end

classdef TrickDie < Die

properties (Access=private)

favoredFace

weight=1;

end

methods
function D = TrickDie(…) …

function f=getFavoredFace(…)…

function w = getWeight(…) …

end

end

Yes! Make TrickDie a subclass of Die

Lecture 25 7

Inheritance

Inheritance relationships are shown in a class diagram, with the
arrow pointing to the parent class

An is-a relationship: the child is a more specific version of the
parent. Eg., a trick die is a die.

Multiple inheritance: can have multiple parents e.g., Matlab
Single inheritance: can have one parent only e.g., Java

Die

TrickDie

handle

Lecture 25 8

Inheritance

• Allows programmer to derive a class from an existing one

• Existing class is called the parent class, or superclass

• Derived class is called the child class or subclass

• The child class inherits the (public and protected) members
defined for the parent class

• Inherited trait can be accessed as though it was locally defined

CS1112 Lecture 25 11/19/2014

2

Lecture 25 9

Must call the superclass’ constructor

• In a subclass’ constructor, call
the superclass’ constructor
before assigning values to the
subclass’ properties.

• Calling the superclass’
constructor cannot be
conditional: explicitly make
one call to superclass’
constructor

classdef Child < Parent

properties
propC
end

methods

function obj = Child(argC, argP)

obj = obj@Parent(argP)

obj.propC = argC;
end

…
end

end

Syntax

See constructor in TrickDie.m
Lecture 25 10

Which components get “inherited”?

• public components get inherited
• private components exist in object of child class,

but cannot be directly accessed in child class
we say they are not inherited

• Note the difference between inheritance and
existence!

Lecture 25 11

protected attribute

• Attributes dictate which members get inherited

• private
– Not inherited, can be accessed by local class only

• public
– Inherited, can be accessed by all classes

• protected
– Inherited, can be accessed by subclasses

• Access: access as though defined locally
• All members from a superclass exist in the subclass, but the
private ones cannot be accessed directly—can be accessed
through inherited (public or protected) methods

Lecture 25 12

td = TrickDie(2, 10, 6);
disp(td.sides)
% disp statement is incorrect because

• Property sides is private.
• Property sides does not

exist in the TrickDie object.
• Both a, b applyC

B

A

Lecture 25 14

classdef Die

…

function D=Die(…)

…

D.roll()

end

function roll(self)

end

…

end

classdef TrickDie < Die
…
funciton TD=TrickDie(…)
…
TD@Die(…);
…

end

function roll(self)

end
…

end

Overridden methods: which version gets invoked?
To create a TrickDie: call the TrickDie constructor, which
calls the Die constructor, which calls the roll method. Which
roll method gets invoked?

Lecture 25 15

Overriding methods

• Subclass can override definition of inherited method
• New method in subclass has the same name (but has

different method body)
• Which method gets used??

The object that is used to invoke a method determines
which version is used

• Since a TrickDie object is calling method roll, the
TrickDie’s version of roll is executed

• In other words, the method most specific to the type
(class) of the object is used

CS1112 Lecture 25 11/19/2014

3

Lecture 25 16

Accessing superclass’ version of a method

• Subclass can override
superclass’ methods

• Subclass can access superclass’
version of the method

classdef Child < Parent

properties
propC
end

methods
…

function x= method(arg)

y= method@Parent(arg);

x = … y … ;
end

…
end
end

Syntax

See method disp in TrickDie.m
Lecture 25 17

Important ideas in inheritance
• Keep common features as high in the hierarchy as

reasonably possible
• Use the superclass’ features as much as possible
• “Inherited” “can be accessed as though declared

locally”
(private member in superclass exists in subclasses; they
just cannot be accessed directly)

• Inherited features are continually passed down the
line

(Cell) array of objects

• A cell array can reference objects of different classes
A{1}= Die();

A{2}= TrickDie(2,10); % OK

• A simple array can reference objects of only one
single class

B(1)= Die();

B(2)= TrickDie(2,10); % ERROR

• (Assignment to B(2) above would work if we define a “convert method” in class
TrickDie for converting a TrickDie object to a Die. We won’t do this in CS1112.)

End of Matlab OOP in CS1112

OOP is a concept; in different languages it is
expressed differently.

In CS (ENGRD) 2110 you will see Java OOP

Lecture 25 20

Recursion

• The Fibonacci sequence is defined recursively:
F(1)=1, F(2)=1,
F(3)= F(1) + F(2) = 2
F(4)= F(2) + F(3) = 3

It is defined in terms of itself; its definition invokes
itself.

• Algorithms, and functions, can be recursive as well.
I.e., a function can call itself.

• Example: remove all occurrences of a character
from a string
‘gc aatc gga c ’ ‘gcaatcggac’

F(k) = F(k‐2) + F(k‐1)

Lecture 25 21

Example: removing all occurrences of a character

• Can solve using iteration—check one character
(one component of the vector) at a time

Subproblem 1:
Keep or discard s(1)

‘c’ ‘s’ ‘ ’ ‘1’ ‘1’ ‘1’ ‘2’
1 2 … k …

s

Subproblem 2:
Keep or discard s(2)

Subproblem k:
Keep or discard s(k)

Iteration:
Divide problem
into a sequence
of equal-sized,
identical
subproblems

See RemoveChar_loop.m

CS1112 Lecture 25 11/19/2014

4

Example: removing all occurrences of a character
• Can solve using recursion

– Original problem: remove all the blanks in string s
– Decompose into two parts: 1. remove blank in s(1)

2. remove blanks in s(2:length(s))
Original problem

Decompose into 2 parts Decompose

Decompose

Decompose

Decompose

‘ ’ Lecture 25 26

function s = removeChar(c, s)
% Return string s with character c removed

if length(s)==0 % Base case: nothing to do
return

else
if s(1)~=c

% return string is
% s(1) and remaining s with char c removed

else
% return string is just
% the remaining s with char c removed

end
end

function s = removeChar(c, s)
if length(s)==0
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs

c

_

_

c _

d _ o gs _

removeChar – 1st call

[]d

function s = removeChar(c, s)
if length(s)==0
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

function s = removeChar(c, s)
if length(s)==0
return

else
if s(1)~=c
s= [s(1) removeChar(c, s(2:length(s)))];

else
s= removeChar(c, s(2:length(s)));

end
end

d _ o gs _

c _

c _

d _ o gs _

removeChar – 1st call

[]d

removeChar – 2nd call
c _

_ o gs _

[]

removeChar – 3rd call
c _

o gs _

[]o

removeChar – 4th call
c _

gs _

[]

removeChar – 5th call
c _

gs

[]g

removeChar – 6th call
c _

s ‘’

‘’

ggo go g

d o g

Key to recursion

• Must identify (at least) one base case, the
“trivially simple” case
– no recursion is done in this case

• The recursive case(s) must reflect progress
towards the base case
– E.g., give a shorter vector as the argument to the

recursive call – see removeChar

