
CS1112 Lecture 21 11/5/2014

1

• Previous lecture:
– Structure & structure array

• Today’s lecture:
– More on structs
– Introduction to objects and classes

• Announcements:
– Project 5 due tonight at 11pm
– Do Exercise 11 question 3.1 and 3.2. Submit on

paper at beginning of your next discussion
– Prelim 2 on Thurs, Nov 13 at 7:30pm
– Prelim 2 topics: end with Project 5 and Lecture

19, i.e., will NOT include structs

Different kinds of abstraction

• Packaging procedures (program instructions)
into a function
– A program is a set of functions executed in the

specified order
– Data is passed to (and from) each function

• Packaging data into a structure
– Elevates thinking
– Reduces the number of variables being passed to

and from functions

Lecture 20 3

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i < j < k

for i=1:n-2
for j=i+1:n-1
for k=j+1:n
disp([i j k])

end
end

end

i j k

Lecture 20 4

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

Still get the same result if all three loop indices end
with n?

i j k
A: Yes B: No

for i=1:n
for j=i+1:n
for k=j+1:n
disp([i j k])

end
end

end

Lecture 20 5

Structures with array fields

Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

xc: x-coordinate of center
yc: y-coordinate of center
r: radius
c: rgb color vector

Examples:
D1 = struct(‘xc’,1,’yc’,2,’r’,3,…

’c’,[1 0 1]);
D2 = struct(‘xc’,4,’yc’,0,’r’,1,…

’c’,[.2 .5 .3]);

Lecture 20 8

Example: Averaging two disks

D

D2

D1

CS1112 Lecture 21 11/5/2014

2

Lecture 20 9

Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average is:
r = (D1.r + D2.r) /2;
xc = (D1.xc + D2.xc)/2;
yc = (D1.yc + D2.yc)/2;
c = (D1.c + D2.c) /2;

% The average is also a disk
D = struct(‘xc’,xc,’yc’yc,’r’,r,’c’,c)

Lecture 20 10

How do you assign to g the green-color
component of disk D?

D= struct(‘xc’,3.5, ‘yc’,2, ...

‘r’,1.0, ‘c’,[.4 .1 .5])

A: g = D.g;

B: g = D.c.g;

C: g = D.c.2;

D: g = D.c(2); E: other

Lecture 20 11

A = MakePoint(2,3)
B = MakePoint(4,5)
L = struct(‘P’,A,‘Q’,B)
• This could be used to represent a line segment

with endpoints P and Q, for instance
• Given the MakePoint function to create a point

structure, what is x below?

x = L.P.y;

A structure’s field can hold a structure

A: 2 B: 3 C: 4 D: 5 E: error

Different kinds of abstraction

• Packaging procedures (program instructions) into a
function
– A program is a set of functions executed in the specified

order
– Data is passed to (and from) each function

• Packaging data into a structure
– Elevates thinking
– Reduces the number of variables being passed to and from

functions
• Packaging data, and the instructions that work on those

data, into an object
– A program is the interaction among objects
– Object-oriented programming (OOP) focuses on the

design of data-instructions groupings

A card game, developed in two ways

•Develop the
algorithm—the logic—
of the card game:
– Set up a deck as an array

of cards. (First, choose
representation of cards.)

– Shuffle the cards
– Deal cards to players
– Evaluate each player’s

hand to determine
winner

• Identify “objects” in the game
and define each:
– Card

• Properties: suit, rank
• Actions: compare, show

– Deck
• Property: array of Cards
• Actions: shuffle, deal, get #cards left

– Hand …
– Player …

•Then write the game—the
algorithm—using objects of
the above “classes”

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

Notice the two steps involved in OOP?

• Define the classes (of the objects)
– Identify the properties (data) and actions

(methods, i.e., functions) of each class

• Create the objects (from the classes) that are
then used—that interact with one another

CS1112 Lecture 21 11/5/2014

3

Defining a class ≠ creating an object

• A class is a specification
– E.g., a cookie cutter specifies the

shape of a cookie

• An object is a concrete instance of
the class
– Need to apply the cookie cutter to

get a cookie (an instance, the object)
– Many instances (cookies) can be made

using the class (cookie cutter)
– Instances do not interfere with one

another. E.g., biting the head off one
cookie doesn’t remove the heads of
the other cookies

Example class: Rectangle

• Properties:
– xLL, yLL, width, height

• Methods (actions):
– Calculate area
– Calculate perimeter
– Draw
– Intersect (the intersection between two

rectangles is a rectangle!)

(xLL, yLL)

Example class: Time

• Properties:
– Hour, minute, second

• Methods (actions):
– Show (e.g., display in hh:mm:ss format)
– Advance (e.g., advance current time by some

amount)

Example class: Window (e.g., dialog box)

• Properties:
– Title, option buttons, input dialog …

• Methods (actions):
– Show
– Resize
– …

Many such useful
classes have been

predefined!

Matlab supports procedural and object-oriented
programming

• We have been writing procedural programs—
focusing on the algorithm, implemented as a
set of functions

• We have used objects in Matlab as well, e.g.,
graphics

• A plot is a “handle graphics” object
– Can produce plots without knowing about objects
– Knowing about objects gives more possibilities

The plot handle graphics object in Matlab

x=…; y=…;
plot(x,y) creates a graphics object

• In the past we focused on the visual produced
by that command. If we want the visual to
look different we make another plot.

• We can actually “hold on” to the graphics
object—store its “handle”—so that we can
later make changes to that object.

CS1112 Lecture 21 11/5/2014

4

Objects of the same class have the same properties

• Both objects have some x-data, some y-data,
some line style, and some marker style. These
are the properties of one kind, or class, of the
objects (plots)

• The values of the properties are different for
the individual objects

x= 1:10;
% Two separate graphics objects:
plot(x, sin(x), ’k-’)
plot(x(1:5), 2.^x, ’m-*’)

See demoPlotObj.m

Object-Oriented Programming

• First design and define the classes (of the
objects)
– Identify the properties (data) and actions

(methods, i.e., functions) of each class

• Then create the objects (from the classes)
that are then used, that interact with one
another

Class Interval

• An interval has two properties:
– left, right

• Actions—methods—of an interval include
– Scale, i.e., expand
– Shift
– Add one interval to another
– Check if one interval is in another
– Check if one interval overlaps with another

See demoInterval0.m

Class Interval

• An interval has two properties:
– left, right

• Actions—methods—of an interval include
– Scale, i.e., expand
– Shift
– Add one interval to another
– Check if one interval is in another
– Check if one interval overlaps with another

classdef Interval < handle

properties
left
right

end

methods
function scale(self, f)

. . .
end

function shift(self, s)
. . .

end

function Inter = overlap(self, other)
. . .

end

function Inter = add(self, other)
. . .

end

. . .

end

end

To specify the properties and actions
of an object is to define its class

Given class Interval (file Interval.m) …

% Create 2 Intervals, call them A, B
A= Interval(2,4.5)
B= Interval(-3,1)

% Assignment another right end point
A.right= 14

% Half the width of A (scale by 0.5)
A.scale(.5)

% See the result
disp(A.right) % show value in right property in A
disp(A) % show all property values in A
disp(B)

Observations:
•Each object is
referenced by a name.
•Two objects of same
class has same
properties (and
methods).
•To access a property
value, you have to
specify whose property
(which object’s
property) using the dot
notation.
•Changing the property
values of one object
doesn’t affect the
property values of
another object.

An Interval object
classdef Interval < handle

properties
left
right

end

methods
function scale(self, f)

. . .
end

function shift(self, s)
. . .

end

function Inter = overlap(self, other)
. . .

end

function Inter = add(self, other)
. . .

end

. . .

end

end

167.32

3

7

left

right

Interval()
scale()
shift()
overlap()
add()

The “handle” or “reference”
of the object

The “constructor” method

An object is also called an “instance” of a class. It
contains every property, “instance variable,” and
every “instance method” defined in the class.

