CS1112 Lecture 21

11/5/2014

* Previous lecture:

— Structure & structure array
* Today’s lecture:

— More on structs

— Introduction to objects and classes
* Announcements:

— Project 5 due tonight at | Ipm

— Do Exercise || question 3.1 and 3.2. Submit on
paper at beginning of your next discussion

— Prelim 2 onThurs, Nov 13 at 7:30pm

— Prelim 2 topics: end with Project 5 and Lecture
19,i.e., will NOT include structs

Different kinds of abstraction

* Packaging procedures (program instructions)
into a function

— A program is a set of functions executed in the
specified order

— Data is passed to (and from) each function
* Packaging data into a structure
— Elevates thinking

— Reduces the number of variables being passed to
and from functions

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i <j <k

ik
123 234 345 |456|
124 235 346 i -4
125 236 356
I 26 245 i -3
134

246
135 256 for i=1:n-2
136 for j=i+l:n-1
145 i=2 for k=j+1:n
146 - disp(Li § KD
156 enznd
_ d
i = 1 en

Lecture 20 3

Still get the same result if all three loop indices end

wich n? | |

ik
123 234 345 |456|
124 235 346 i - 4
125 236 356
I 245 i =3
134

246
I35 256 for i=1l:n
136 for j=i+l:n
145 i=2 for k=j+1:n
146 disp([i j K1)
156 enznd
= d
T = 1 en

Lecture 20 4

Structures with array fields
Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

Xc: x-coordinate of center
yc: y-coordinate of center

r: radius
c: rgb color vector
Examples:

D1 = struct(“xc’,1,’yc’,2,’r”,3,..
“c’,[1 0 11);

D2 = struct(“xc’,4,’yc’,0,’r”,1,..
“c’,[-2 .5 .3D);

Lecture 20

Example: Averaging two disks

D2

Lecture 20 8

CS1112 Lecture 21

11/5/2014

Example: compute “average” of two disks

% D1 and D2 are disk structures.

% Average is:

r = (Dl.r + D2.r) /2;

xc = (D1l.xc + D2.xc)/2;
yc = (Dl.yc + D2.yc)/2;
c = (Dl.c + D2.c) /2;

% The average is also a disk

D = struct(“xc’,xc,

’yc’yc,’r’,r,’c’”,c)

Lecture 20 9

How do you assign to g the green-color
component of disk D?

D= struct(“xc’,3.5, ‘yc’,2, ...
‘r’,1.0, “c’,[-4 .1 .5])

HA: g =D.g; i
HB: g = D.c.g; |
lc g =pn.c2; |

‘D: g = D.c(2);

E: other I

A structure’s field can hold a structure

A
B

MakePoint(2,3) :{'Y;;g;,’\i_'%‘ﬁ?i"ﬂ
MakePoint(4,5) “‘zm

L = struct(“P’,A,“Q*,B)
* This could be used to represent a line segment
with endpoints P and Q, for instance

* Given the MakePoint function to create a point
structure, what is x below?

X = L.P.y;

A:ZI B:3I C:4I D:SI E: error I

Different kinds of abstraction

* Packaging procedures (program instructions) into a
function

— A program is a set of functions executed in the specified
order

— Data is passed to (and from) each function
* Packaging data into a structure
— Elevates thinking
— Reduces the number of variables being passed to and from
functions
* Packaging data, and the instructions that work on those
data, into an object
— A program is the interaction among objects

— Object-oriented programming (OOP) focuses on the
design of data-instructions groupings

A card game, developed in two ways

* Develop the
algorithm—the logic—
of the card game:

— Set up a deck as an array
of cards. (First, choose
representation of cards.)

— Shuffle the cards
— Deal cards to players

— Evaluate each player’s
hand to determine
winner

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

* Identify “objects” in the game
and define each:
— Card
* Properties: suit, rank
* Actions: compare, show
— Deck
* Property: array of Cards
* Actions: shuffle, deal, get #cards left
— Hand ...
— Player ...
* Then write the game—the
algorithm—using objects of
the above “classes”

Notice the two steps involved in OOP?

¢ Define the classes (of the objects)

— Identify the properties (data) and actions
(methods, i.e., functions) of each class

* Create the objects (from the classes) that are
then used—that interact with one another

CS1112 Lecture 21

Defining a class # creating an object

* A class is a specification

— E.g.,a cookie cutter specifies the
shape of a cookie

* An object is a concrete instance of
the class

— Need to apply the cookie cutter to
get a cookie (an instance, the object)

— Many instances (cookies) can be made
using the class (cookie cutter)

— Instances do not interfere with one
another. E.g, biting the head off one
cookie doesn’t remove the heads of
the other cookies

11/5/2014

Example class: Rectangle

* Properties:
—xLL, yLL, width, height
* Methods (actions):

— Calculate area

(XLL, yLL)

— Calculate perimeter
— Draw

— Intersect (the intersection between two
rectangles is a rectangle!)

Example class: Time

* Properties:
— Hour; minute, second
* Methods (actions):
— Show (e.g., display in hh:mm:ss format)

— Advance (e.g.,advance current time by some
amount)

Example class: Window (e.g., dialog box)

* Properties:
— Title, option buttons, input dialog ...
* Methods (actions):

— Show
— Resize swanlo o] = f e
Many such useful Fle s [B [IETT

classes have been L T — |

predefined!

Matlab supports procedural and object-oriented

programming

* We have been writing procedural programs—
focusing on the algorithm, implemented as a
set of functions

* We have used objects in Matlab as well, e.g.,
graphics

* A plot is a “handle graphics” object
— Can produce plots without knowing about objects
— Knowing about objects gives more possibilities

The plot handle graphics object in Matlab

X=.; Y=
plot(x,y) creates a graphics object

* In the past we focused on the visual produced
by that command. If we want the visual to
look different we make another plot.

* We can actually “hold on” to the graphics

object—store its “handle”—so that we can
later make changes to that object.

CS1112 Lecture 21

11/5/2014

Objects of the same class have the same properties

x= 1:10;

% Two separate graphics objects:
plot(x, sin(x), *k-7)
plot(x(1:5), 2.~x, “m-*7)

* Both objects have some x-data, some y-data,
some line style, and some marker style. These
are the properties of one kind, or class, of the
objects (plots)

* The values of the properties are different for
the individual objects

See demoPlotObj.m

Object-Oriented Programming

* First design and define the classes (of the

objects)
— Identify the properties (data) and actions (7% &
(methods, i.e., functions) of each class L/ >

* Then create the objects (from the classes)
that are then used, that interact with one
another

Class Interval

* An interval has two properties:
— left, right
* Actions—methods—of an interval include
— Scale, i.e., expand
— Shift
— Add one interval to another
— Check if one interval is in another
— Check if one interval overlaps with another

See demolntervalO.m

classdef Interval < handle

Class Interval properdes
:ght
end

* An interval has two prope
methods
— left, right function scale(self, f)
. d’
* Actions—methods—of an
function shift(self, s)

— Scale, i.e., expand

end

— Shift function Inter = overlap(self, other)

— Add one interval to anothe end’

. Check If one interval iS in a function Inter = add(self, other)
end’

— Check if one interval overl

To specify the properties and actions
of an object is to define its class end

Given class Interval (file Interval.m) ...

% Create 2 Intervals, call them £ hOESerqui°"51
A= Interval(2,4.5) +Each object is

_ referenced by a name.
B= Interval(-3,1) +Two objects of same

~ R class has same
% Assignment another right end properties (and
A.right= 14 methods).

+To access a property

% Half the width of A (scale by value, you have to
A.scale(.5) specify whose property
(which object's
property) using the dot

% See the result g
otarion.

disp(A.right) % show value in rig/ ¢

Gisp % S et property ey

disp(B) doesn't affect the
property values of
another object.

classdef Interval < handle
An Interval object .
properties
left
The “handle” or “reference” right

! ﬂ/ of the object end

methods
function scale(self,)

i
function shift(self, s)

i

| function Inter = overlap(self, other)
/ i’

overlap() /// function Inter = add(self, other)

add() ~—— | end’

The “constructor” method

An object is also called an “instance” of a class. It
contains every property, “instance variable,” and end
every “instance method” defined in the class.

