
• Previous lecture:
– Structure & structure array

• Today’s lecture:
– More on structs
– Introduction to objects and classes

• Announcements:
– Project 5 due tonight at 11pm
– Do Exercise 11 question 3.1 and 3.2. Submit on

paper at beginning of your next discussion
– Prelim 2 on Thurs, Nov 13 at 7:30pm
– Prelim 2 topics: end with Project 5 and Lecture

19, i.e., will NOT include structs

Different kinds of abstraction

• Packaging procedures (program instructions)
into a function
– A program is a set of functions executed in the

specified order
– Data is passed to (and from) each function

• Packaging data into a structure
– Elevates thinking
– Reduces the number of variables being passed to

and from functions

Lecture 20 3

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i < j < k

for i=1:n-2
for j=i+1:n-1

for k=j+1:n
disp([i j k])

end
end

end

i j k

Lecture 20 4

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

Still get the same result if all three loop indices end
with n?

i j k
A: Yes B: No

for i=1:n
for j=i+1:n

for k=j+1:n
disp([i j k])

end
end

end

Lecture 20 5

Structures with array fields
Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

xc: x-coordinate of center
yc: y-coordinate of center
r: radius
c: rgb color vector

Examples:
D1 = struct(‘xc’,1,’yc’,2,’r’,3,…

’c’,[1 0 1]);
D2 = struct(‘xc’,4,’yc’,0,’r’,1,…

’c’,[.2 .5 .3]);

Lecture 20 6

Example: Averaging two disks

D2

D1

Lecture 20 7

Example: Averaging two disks

D2

D1

Lecture 20 8

Example: Averaging two disks

D

D2

D1

Lecture 20 9

Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average is:
r = (D1.r + D2.r) /2;
xc = (D1.xc + D2.xc)/2;
yc = (D1.yc + D2.yc)/2;
c = (D1.c + D2.c) /2;

% The average is also a disk
D = struct(‘xc’,xc,’yc’yc,’r’,r,’c’,c)

Lecture 20 10

How do you assign to g the green-color
component of disk D?

D= struct(‘xc’,3.5, ‘yc’,2, ...
‘r’,1.0, ‘c’,[.4 .1 .5])

A: g = D.g;

B: g = D.c.g;

C: g = D.c.2;

D: g = D.c(2); E: other

Lecture 20 11

A = MakePoint(2,3)
B = MakePoint(4,5)
L = struct(‘P’,A,‘Q’,B)
• This could be used to represent a line segment

with endpoints P and Q, for instance
• Given the MakePoint function to create a point

structure, what is x below?

x = L.P.y;

A structure’s field can hold a structure

A: 2 B: 3 C: 4 D: 5 E: error

Different kinds of abstraction

• Packaging procedures (program instructions) into a
function
– A program is a set of functions executed in the specified

order
– Data is passed to (and from) each function

• Packaging data into a structure
– Elevates thinking
– Reduces the number of variables being passed to and from

functions
• Packaging data, and the instructions that work on those

data, into an object
– A program is the interaction among objects
– Object-oriented programming (OOP) focuses on the

design of data-instructions groupings

A card game, developed in two ways

• Develop the
algorithm—the logic—
of the card game:
– Set up a deck as an array

of cards. (First, choose
representation of cards.)

– Shuffle the cards
– Deal cards to players
– Evaluate each player’s

hand to determine
winner

• Identify “objects” in the game
and define each:
– Card

• Properties: suit, rank
• Actions: compare, show

– Deck
• Property: array of Cards
• Actions: shuffle, deal, get #cards left

– Hand …
– Player …

• Then write the game—the
algorithm—using objects of
the above “classes”

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

A card game, developed in two ways

• Develop the
algorithm—the logic—
of the card game:
– Set up a deck as an array

of cards. (First, choose
representation of cards.)

– Shuffle the cards
– Deal cards to players
– Evaluate each player’s

hand to determine
winner

• Identify “objects” in the game
and define each:
– Card

• Properties: suit, rank
• Actions: compare, show

– Deck
• Property: array of Cards
• Actions: shuffle, deal, get #cards left

– Hand …
– Player …

• Then write the game—the
algorithm—using objects of
the above “classes”

Procedural programming:
focus on the algorithm, i.e.,
the procedures, necessary
for solving a problem

Object-oriented
programming: focus on the
design of the objects (data
+ actions) necessary for
solving a problem

Notice the two steps involved in OOP?

• Define the classes (of the objects)
– Identify the properties (data) and actions

(methods, i.e., functions) of each class

• Create the objects (from the classes) that are
then used—that interact with one another

Defining a class ≠ creating an object

• A class is a specification
– E.g., a cookie cutter specifies the

shape of a cookie

• An object is a concrete instance of
the class
– Need to apply the cookie cutter to

get a cookie (an instance, the object)
– Many instances (cookies) can be made

using the class (cookie cutter)
– Instances do not interfere with one

another. E.g., biting the head off one
cookie doesn’t remove the heads of
the other cookies

Example class: Rectangle

• Properties:
– xLL, yLL, width, height

• Methods (actions):
– Calculate area
– Calculate perimeter
– Draw
– Intersect (the intersection between two

rectangles is a rectangle!)

(xLL, yLL)

Example class: Time

• Properties:
– Hour, minute, second

• Methods (actions):
– Show (e.g., display in hh:mm:ss format)
– Advance (e.g., advance current time by some

amount)

Example class: Window (e.g., dialog box)

• Properties:
– Title, option buttons, input dialog …

• Methods (actions):
– Show
– Resize
– …

Many such useful
classes have been

predefined!

Matlab supports procedural and object-oriented
programming

• We have been writing procedural programs—
focusing on the algorithm, implemented as a
set of functions

• We have used objects in Matlab as well, e.g.,
graphics

• A plot is a “handle graphics” object
– Can produce plots without knowing about objects
– Knowing about objects gives more possibilities

The plot handle graphics object in Matlab

x=…; y=…;
plot(x,y) creates a graphics object

• In the past we focused on the visual produced
by that command. If we want the visual to
look different we make another plot.

• We can actually “hold on” to the graphics
object—store its “handle”—so that we can
later make changes to that object.

Objects of the same class have the same properties

• Both objects have some x-data, some y-data,
some line style, and some marker style. These
are the properties of one kind, or class, of the
objects (plots)

• The values of the properties are different for
the individual objects

x= 1:10;
% Two separate graphics objects:
plot(x, sin(x), ’k-’)
plot(x(1:5), 2.^x, ’m-*’)

See demoPlotObj.m

Object-Oriented Programming

• First design and define the classes (of the
objects)
– Identify the properties (data) and actions

(methods, i.e., functions) of each class

• Then create the objects (from the classes)
that are then used, that interact with one
another

