CS1112 Lecture 20

m Previous Lecture:
= File I/O, use of cell array

= Today’s Lecture:
= Structures

= Structure array (i.e., an array of structures)
= A structure with array fields

= Announcements:

= Project 5 due Thurs 11/6 at | Ipm. Reduced late penalty

of 5% applies to submission made up to 11/7 at | Ipm
= Prelim 2 on Thurs 1/13 at 7:30pm. Email Randy Hess

(rbh27) now if you have an exam conflict (include the

course and instructor info of the conflicting exam)

Data are often related

= A point in the plane has an x coordinate and a y
coordinate.

= If a program manipulates lots of points, there will
be lots of X’s and y’s.

= Anticipate clutter. Is there a way to “package”
the two coordinate values?

Lecture 20 2

Packaging affects thinking

Our Reasoning Level:

P and Q are points.
Compute the midpoint M
of the connecting line
segment.

Behind the scenes we do
this:

M, = (P, + Q2

M, = (P, + Q)2
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We've seen this before:
functions are used to
“package” calculations.

This packaging (a type of
abstraction) elevates the
level of our reasoning
and is critical for
problem solving.

Example: a Point structure

3 4
% pl is a Point X y
pl.x= 3;
pl.y= 4; pl
% p2 is another Point 1 7
p2.x= -1; -
p2_y: 7; X Yy

p2

A Point has two properties—fields—x and y
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Working with Point structures

pl.x=3; pl.y=4;

3|14 -1

p2.x=-1; p2.y=7;

7
X \Y% X A%

pl p2

% Distance between points pl and p2
D= sqrt((pl.x-p2.x)"2 + (pl.y-p2.y)"2);

Note that pl.x, pl.y, p2.x, p2.y
participate in the calculation as
variables—because they are.
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Different ways to create a structure
% Create a struct by assigning field values

pl.x= 3;
pl.y= 4;
% Create a struct with built-in function
p2 = struct(“x’,-1, “y’,7); 3 4
X Yy
p2 is a structure.
The structure has two fields. | pl |
Their names are X and Y.
They are assigned the values -1 and 7. _):(I' z/
p2
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Accessing the fields in a structure Assigning to a field in a structure
3 4 3 4
X y 7 X y
= X+ .Y; Assigns the value 7 to A = o ;
A = pl.x + pl.y; gn u pl.x = pl.y"2; Assigns the value 16 to pl.x
A structure can have fields of different types Legal/lllegal maneuvers
Q = struct(“x’,5,%y”,6)
A = struct(“sname’, “New York?,..
. ~ . . . R =0Q % Legal. R is a copy of Q
capital’, “Albany”’,..
< > S = (Q+R)/2 % Illegal. Must access the
pop”, 15.5) % fields to do calculations
. . . P = struct(“x’,3,%y’) % Illegal. Args must be
= Can have combinations of string fields and ¢ D o/z in pgirs (f?em name
numeric fields % followed by field
. . . X % value)
= Arguments are given in pairs: a field name,
followed by the value P = struct(“x”,3,%y’,[1) % Legal. Use [] as
Py =4 % place holder
Structures in functions Example “Make” Function

i i - function P = MakePoint(x,y)
function d = dist(P,Q) M&o % P is a point with P.x and P.y

X _
% P and Q are points (structure). \35’:‘“?\0«19;\‘0,(96 % assigned the values x and y.
- - \((\q“‘\,(\;v@
0 SO
% d is the distance between them. gg:k\“\x\o‘\ P = Struct("x*,x.,"y".y):
d = Sq rt((P.x—Q.x)’\Z + ... Then in a script or some other function. ..
(P.y—Q.y)’\Z); a= 10; b= rand;

Pt= MakePoint(a,b); % create a point struct
% according to definition
% in MakePoint function
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Another function that has structure parameters

function DrawLine(P,Q,c)
% P and Q are points (structure).
% Draws a line segment connecting

% P and Q. Color is specified by c.

plot([P-x Q.x],[P-y Q.y]l,c)

Pick Up Sticks

s = "rgbmcy”;
for k=1:100

P = MakePoint(randn,randn);
Q = MakePoint(randn,randn);
c = s(ceil(6*rand));
DrawLine(P,Q,c)

end

Generates two random points and
connect them using one of six colors
chosen randomly.

Structure Arrays

= An array whose components are structures

= All the structures must be the same (have the
same fields) in the array

= Example: an array of points (point structures)

pl| 5 | .86 15| .91 4 | 28 25| 1.8
y X ||y X ||y X ||y
PCL P P P(4)

P(1) = MakePoint(.50, -86)
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Function returning an array of points (point structures)

function P = CirclePoints(n)
%P is array of n point structs; the
%points are evenly spaced on unit circle

theta = 2*pi/n;
for k=1:n

c = cos(theta*k);

s = sin(theta*k);

P(k) = MakePoint(c,s);
end
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Example: all possible triangles

= Place n points uniformly around the unit circle.

= Draw all possible unique triangles obtained by
connecting these points 3-at-a-time.

(i,j,k)=(1,2,4) (i,j,k)=(1,2,6)
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function DrawTriangle(U,V,W,c)

% Draw c-colored triangle;

% triangle vertices are points U,
% V, and W.

Fill(JU-x V.x W.x], ---
[U.y V.y W.y], ©)
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The following triangles are the same: (1,3,6), (1,6,3),
(3,1,6),(3,6,1),(6,1,3), (6,3,1)
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Bad! i, j, and k should be different, and
there should be no duplicates

% Given P, an array of point structures
for i=1:n
for j=1:n
for k=1:n
DrawTriangle(P(i),P(J),P(k),’m?)
pause
DrawTriangle(P(1),P(J),P(k),’k?)
end
end
end
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All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i <j <k

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i<j <k

for i=1:n-2 for i=1:n
for j=i+l:n-1 for j=1:n
for k=j+1:n for k=1:n
disp([i j kI if i<j && j<k
end disp([i j K1)
end end
end end
end
end

Both versions print all possible, unique combinations of
(i,j,k), but the left fragment is far more efficient
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ijk
123 234 345 |456|
124 235 346 - _
1 =4
125 236 356
126 245 i =3
134 246
135 290 fo;o: ;—;ri]é:n—l
136 = _ for k=j+1:n
145 =2 disp([i j KI)
146 e
15 end
i= 1 end
All possible unique triangles
% Drawing on a black background
for 1=1:n-2
for j=i+l:n-1
for k=j+1:n
DrawTriangle( P(1),P(),P(k), " m™)
DrawPoints(P)
pause
DrawTriangle(P(i),P().,P(K), k")
end
end

end
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Still get the same result if all three loop indices end

wich | [N
ijk
123 234 345 |456 |

124 235 346 -

i =4
125 236 356
126 245 i -3
134 246
for i=1:n
135 BD6 for j=i+l:n
136 i -2 for k=j+l:n
145 1= disp([i j KI)
146 S"d
en
156
. d
i = 1 en
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Structures with array fields
Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

xc: x-coordinate of center
yc: y-coordinate of center

r: radius
c: rgb color vector
Examples:

D1 = struct(‘xc’,1,’yc’,2,’r’,3,..
‘c”,[1 0 11);

D2 = struct(“xc’,4,’yc’,0,’r”,1,..
‘c’,[-2 .5 .3D;
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Example: Averaging two disks

D2
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Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average is:
r = (@1l.r + D2.r) /2;

xc = (Dl.xc + D2.xc)/2;
yc = (D1l.yc + D2.yc)/2;
c = (l.c + D2.c) /2;

% The average is also a disk
D = struct(“xc’,xc,’yc’yc,’r’,r,’c”,c)
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How do you assign to g the green-color
component of disk D?

D= struct(“xc’,3.5, “yc’,2, ...
‘r’,1.0, “c’,[-4 .1 .5])
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Different kinds of abstraction

= Packaging procedures (program instructions) into a
function
= A program is a set of functions executed in the specified order
= Data is passed to (and from) each function
= Packaging data into a structure
= Elevates thinking

= Reduces the number of variables being passed to and from
functions

= Packaging data, and the instructions that work on those
data, into an object
= A program is the interaction among objects

= Object-oriented programming (OOP) focuses on the design of
data-instructions groupings




