
CS1112 Lecture 20

Lecture slides 1

 Previous Lecture:
 File I/O, use of cell array

 Today’s Lecture:
 Structures
 Structure array (i.e., an array of structures)
 A structure with array fields

 Announcements:
 Project 5 due Thurs 11/6 at 11pm. Reduced late penalty

of 5% applies to submission made up to 11/7 at 11pm
 Prelim 2 on Thurs 11/13 at 7:30pm. Email Randy Hess

(rbh27) now if you have an exam conflict (include the
course and instructor info of the conflicting exam)

Lecture 20 2

 A point in the plane has an x coordinate and a y
coordinate.

 If a program manipulates lots of points, there will
be lots of x’s and y’s.

 Anticipate clutter. Is there a way to “package”
the two coordinate values?

Data are often related

Lecture 20 3

Our Reasoning Level:

P and Q are points.
Compute the midpoint M
of the connecting line
segment.

Behind the scenes we do
this:

Mx = (Px + Qx)/2
My = (Py + Qy)/2

Packaging affects thinking

We’ve seen this before:
functions are used to
“package’’ calculations.

This packaging (a type of
abstraction) elevates the
level of our reasoning
and is critical for
problem solving.

Lecture 20 4

Example: a Point structure

% p1 is a Point

p1.x= 3;

p1.y= 4;

% p2 is another Point

p2.x= -1;

p2.y= 7;

p1

x y

3 4

p2

x y

-1 7

A Point has two properties—fields—x and y

Lecture 20 5

Working with Point structures

p1.x=3; p1.y=4;

p2.x=-1; p2.y=7;

% Distance between points p1 and p2

D= sqrt((p1.x-p2.x)^2 + (p1.y-p2.y)^2);

Note that p1.x, p1.y, p2.x, p2.y
participate in the calculation as
variables—because they are.

p1

x y
3 4

p2

x y
-1 7

Lecture 20

Different ways to create a structure

p2 is a structure.
The structure has two fields.
Their names are x and y.
They are assigned the values -1 and 7.

% Create a struct by assigning field values

p1.x= 3;

p1.y= 4;
% Create a struct with built-in function

p2 = struct(‘x’,-1, ‘y’,7);

p1

x y
3 4

p2

x y
-1 7

CS1112 Lecture 20

Lecture slides 2

Lecture 20 8

p1

x y

3 4

A = p1.x + p1.y; Assigns the value 7 to A

Accessing the fields in a structure

7

A

Lecture 20 9

p1

x y

3 4

p1.x = p1.y^2; Assigns the value 16 to p1.x

Assigning to a field in a structure

Lecture 20 10

A = struct(‘sname’, ‘New York’,…

‘capital’, ‘Albany’,…

‘pop’, 15.5)

 Can have combinations of string fields and
numeric fields

 Arguments are given in pairs: a field name,
followed by the value

A structure can have fields of different types

Lecture 20 11

Legal/Illegal maneuvers

Q = struct(‘x’,5,’y’,6)

R = Q % Legal. R is a copy of Q

S = (Q+R)/2 % Illegal. Must access the
% fields to do calculations

P = struct(‘x’,3,’y’) % Illegal. Args must be
% in pairs (field name
% followed by field
% value)

P = struct(‘x’,3,’y’,[]) % Legal. Use [] as
P.y = 4 % place holder

Lecture 20 12

function d = dist(P,Q)

% P and Q are points (structure).

% d is the distance between them.

d = sqrt((P.x-Q.x)^2 + ...

(P.y-Q.y)^2);

Structures in functions

Lecture 20 13

Example “Make” Function

function P = MakePoint(x,y)

% P is a point with P.x and P.y

% assigned the values x and y.

P = struct('x',x,'y',y);

a= 10; b= rand;
Pt= MakePoint(a,b); % create a point struct

% according to definition
% in MakePoint function

Then in a script or some other function…

CS1112 Lecture 20

Lecture slides 3

Lecture 20 14

function DrawLine(P,Q,c)

% P and Q are points (structure).

% Draws a line segment connecting

% P and Q. Color is specified by c.

plot([P.x Q.x],[P.y Q.y],c)

Another function that has structure parameters

Lecture 20 16

s = 'rgbmcy';

for k=1:100

P = MakePoint(randn,randn);

Q = MakePoint(randn,randn);

c = s(ceil(6*rand));

DrawLine(P,Q,c)

end

Generates two random points and
connect them using one of six colors
chosen randomly.

Pick Up Sticks

Lecture 20 17

Structure Arrays

 An array whose components are structures
 All the structures must be the same (have the

same fields) in the array
 Example: an array of points (point structures)

.86
y

.5
x

.91
y

1.5
x

.28
y

.4
x

1.8
y

2.5
x

P

P(1) P(2) P(3) P(4)

Lecture 20 18

P(1)

x y

.50

An Array of Points

.86

P(1) = MakePoint(.50,.86)

Lecture 20 24

function P = CirclePoints(n)
%P is array of n point structs; the
%points are evenly spaced on unit circle

theta = 2*pi/n;
for k=1:n

c = cos(theta*k);
s = sin(theta*k);
P(k) = MakePoint(c,s);

end

Function returning an array of points (point structures)

Lecture 20 25

 Place n points uniformly around the unit circle.
 Draw all possible unique triangles obtained by

connecting these points 3-at-a-time.

Example: all possible triangles

(i , j , k) = (1 , 2 , 4)

12

3

4 5

6

(i , j , k) = (1 , 2 , 6)

12

3

4 5

6

CS1112 Lecture 20

Lecture slides 4

Lecture 20 26

function DrawTriangle(U,V,W,c)

% Draw c-colored triangle;

% triangle vertices are points U,

% V, and W.

fill([U.x V.x W.x], ...

[U.y V.y W.y], c)

Lecture 20 27

(i , j , k) = (1 , 3 , 6)

12

3

4 5

6

(i , j , k) = (1 , 4 , 5)

12

3

4 5

6

The following triangles are the same: (1,3,6), (1,6,3),
(3,1,6), (3,6,1), (6,1,3), (6,3,1)

Lecture 20 28

% Given P, an array of point structures

for i=1:n

for j=1:n

for k=1:n

DrawTriangle(P(i),P(j),P(k),’m’)

pause

DrawTriangle(P(i),P(j),P(k),’k’)

end

end

end

Bad! i, j, and k should be different, and
there should be no duplicates

Lecture 20 29

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i < j < k

for i=1:n-2
for j=i+1:n-1
for k=j+1:n

disp([i j k])
end

end
end

i j k

Both versions print all possible, unique combinations of
(i,j,k), but the left fragment is far more efficient

Lecture 20 30

for i=1:n-2
for j=i+1:n-1
for k=j+1:n

disp([i j k])
end

end
end

for i=1:n
for j=1:n
for k=1:n

if i<j && j<k
disp([i j k])

end
end

end
end

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i < j < k

Lecture 20 33

% Drawing on a black background
for i=1:n-2
for j=i+1:n-1
for k=j+1:n
DrawTriangle(P(i),P(j),P(k),'m')
DrawPoints(P)
pause
DrawTriangle(P(i),P(j),P(k),'k')

end
end

end

All possible unique triangles

CS1112 Lecture 20

Lecture slides 5

Lecture 20 35

1 2 3
1 2 4
1 2 5
1 2 6
1 3 4
1 3 5
1 3 6
1 4 5
1 4 6
1 5 6

2 3 4
2 3 5
2 3 6
2 4 5
2 4 6
2 5 6

3 4 5
3 4 6
3 5 6

4 5 6

i = 1

i = 4

i = 3

i = 2

Still get the same result if all three loop indices end
with n?

i j k
A: Yes B: No

for i=1:n
for j=i+1:n
for k=j+1:n

disp([i j k])
end

end
end

Lecture 20 37

Structures with array fields

Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

xc: x-coordinate of center
yc: y-coordinate of center
r: radius
c: rgb color vector

Examples:
D1 = struct(‘xc’,1,’yc’,2,’r’,3,…

’c’,[1 0 1]);
D2 = struct(‘xc’,4,’yc’,0,’r’,1,…

’c’,[.2 .5 .3]);

Lecture 20 40

Example: Averaging two disks

D

D2

D1

Lecture 20 41

Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average is:
r = (D1.r + D2.r) /2;
xc = (D1.xc + D2.xc)/2;
yc = (D1.yc + D2.yc)/2;
c = (D1.c + D2.c) /2;

% The average is also a disk
D = struct(‘xc’,xc,’yc’yc,’r’,r,’c’,c)

Lecture 20 42

How do you assign to g the green-color
component of disk D?

D= struct(‘xc’,3.5, ‘yc’,2, ...

‘r’,1.0, ‘c’,[.4 .1 .5])

A: g = D.g;

B: g = D.c.g;

C: g = D.c.2;

D: g = D.c(2); E: other

Different kinds of abstraction

 Packaging procedures (program instructions) into a
function
 A program is a set of functions executed in the specified order
 Data is passed to (and from) each function

 Packaging data into a structure
 Elevates thinking
 Reduces the number of variables being passed to and from

functions
 Packaging data, and the instructions that work on those

data, into an object
 A program is the interaction among objects
 Object-oriented programming (OOP) focuses on the design of

data-instructions groupings

