CS1112 Lecture 20

m Previous Lecture:
= File I/O, use of cell array

= Today’s Lecture:
= Structures

= Structure array (i.e., an array of structures)
= A structure with array fields

= Announcements:

= Project 5 due Thurs 11/6 at | Ipm. Reduced late penalty

of 5% applies to submission made up to 11/7 at | Ipm
= Prelim 2 on Thurs 1/13 at 7:30pm. Email Randy Hess

(rbh27) now if you have an exam conflict (include the

course and instructor info of the conflicting exam)

Data are often related

= A point in the plane has an x coordinate and a y
coordinate.

= If a program manipulates lots of points, there will
be lots of X’s and y’s.

= Anticipate clutter. Is there a way to “package”
the two coordinate values?

Lecture 20 2

Packaging affects thinking

Our Reasoning Level:

P and Q are points.
Compute the midpoint M
of the connecting line
segment.

Behind the scenes we do
this:

M, = (P, + Q2

M, = (P, + Q)2

Lecture 20

We've seen this before:
functions are used to
“package” calculations.

This packaging (a type of
abstraction) elevates the
level of our reasoning
and is critical for
problem solving.

Example: a Point structure

3 4
% pl is a Point X y
pl.x= 3;
pl.y= 4; pl
% p2 is another Point 1 7
p2.x= -1; -
p2_y: 7; X Yy

p2

A Point has two properties—fields—x and y

Lecture 20 a

Working with Point structures

pl.x=3; pl.y=4;

3|14 -1

p2.x=-1; p2.y=7;

7
X \Y% X A%

pl p2

% Distance between points pl and p2
D= sqrt((pl.x-p2.x)"2 + (pl.y-p2.y)"2);

Note that pl.x, pl.y, p2.x, p2.y
participate in the calculation as
variables—because they are.

Lecture 20

Different ways to create a structure
% Create a struct by assigning field values

pl.x= 3;
pl.y= 4;
% Create a struct with built-in function
p2 = struct(“x’,-1, “y’,7); 3 4
X Yy
p2 is a structure.
The structure has two fields. | pl |
Their names are X and Y.
They are assigned the values -1 and 7. _):(I' z/
p2

Lecture slides

CS1112 Lecture 20

Accessing the fields in a structure Assigning to a field in a structure
3 4 3 4
X y 7 X y
= X+ .Y; Assigns the value 7 to A = o ;
A = pl.x + pl.y; gn u pl.x = pl.y"2; Assigns the value 16 to pl.x
A structure can have fields of different types Legal/lllegal maneuvers
Q = struct(“x’,5,%y”,6)
A = struct(“sname’, “New York?,..
. ~ . . . R =0Q % Legal. R is a copy of Q
capital’, “Albany”’,..
< > S = (Q+R)/2 % Illegal. Must access the
pop”, 15.5) % fields to do calculations
. . . P = struct(“x’,3,%y’) % Illegal. Args must be
= Can have combinations of string fields and ¢ D o/z in pgirs (f?em name
numeric fields % followed by field
. . . X % value)
= Arguments are given in pairs: a field name,
followed by the value P = struct(“x”,3,%y’,[1) % Legal. Use [] as
Py =4 % place holder
Structures in functions Example “Make” Function

i i - function P = MakePoint(x,y)
function d = dist(P,Q) M&o % P is a point with P.x and P.y

X _
% P and Q are points (structure). \35’:‘“?\0«19;\‘0,(96 % assigned the values x and y.
- - \((\q“‘\,(\;v@
0 SO
% d is the distance between them. gg:k\“\x\o‘\ P = Struct("x*,x.,"y".y):
d = Sq rt((P.x—Q.x)’\Z + ... Then in a script or some other function. ..
(P.y—Q.y)’\Z); a= 10; b= rand;

Pt= MakePoint(a,b); % create a point struct
% according to definition
% in MakePoint function

Lecture 20 12 Lecture 20

Lecture slides

CS1112 Lecture 20

Another function that has structure parameters

function DrawLine(P,Q,c)
% P and Q are points (structure).
% Draws a line segment connecting

% P and Q. Color is specified by c.

plot([P-x Q.x],[P-y Q.y]l,c)

Pick Up Sticks

s = "rgbmcy”;
for k=1:100

P = MakePoint(randn,randn);
Q = MakePoint(randn,randn);
c = s(ceil(6*rand));
DrawLine(P,Q,c)

end

Generates two random points and
connect them using one of six colors
chosen randomly.

Structure Arrays

= An array whose components are structures

= All the structures must be the same (have the
same fields) in the array

= Example: an array of points (point structures)

pl| 5 | .86 15| .91 4 | 28 25| 1.8
y X ||y X ||y X ||y
PCL P P P(4)

P(1) = MakePoint(.50, -86)

Lecture 20 18

Function returning an array of points (point structures)

function P = CirclePoints(n)
%P is array of n point structs; the
%points are evenly spaced on unit circle

theta = 2*pi/n;
for k=1:n

c = cos(theta*k);

s = sin(theta*k);

P(k) = MakePoint(c,s);
end

Lecture slides

Example: all possible triangles

= Place n points uniformly around the unit circle.

= Draw all possible unique triangles obtained by
connecting these points 3-at-a-time.

(i,j,k)=(1,2,4) (i,j,k)=(1,2,6)

CS1112 Lecture 20

function DrawTriangle(U,V,W,c)

% Draw c-colored triangle;

% triangle vertices are points U,
% V, and W.

Fill(JU-x V.x W.x], ---
[U.y V.y W.y], ©)

Lecture 20 2

The following triangles are the same: (1,3,6), (1,6,3),
(3,1,6),(3,6,1),(6,1,3), (6,3,1)

Lecture 20 27

Bad! i, j, and k should be different, and
there should be no duplicates

% Given P, an array of point structures
for i=1:n
for j=1:n
for k=1:n
DrawTriangle(P(i),P(J),P(k),’m?)
pause
DrawTriangle(P(1),P(J),P(k),’k?)
end
end
end

Lecture 20 2

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i <j <k

All possible (i,j,k) combinations but avoid duplicates.
Loop index values have this relationship i<j <k

for i=1:n-2 for i=1:n
for j=i+l:n-1 for j=1:n
for k=j+1:n for k=1:n
disp([i j kI if i<j && j<k
end disp([i j K1)
end end
end end
end
end

Both versions print all possible, unique combinations of
(i,j,k), but the left fragment is far more efficient

Lecture 20 20

Lecture slides

ijk
123 234 345 |456|
124 235 346 - _
1 =4
125 236 356
126 245 i =3
134 246
135 290 fo;o: ;—;ri]é:n—l
136 = _ for k=j+1:n
145 =2 disp([i j KI)
146 e
15 end
i= 1 end
All possible unique triangles
% Drawing on a black background
for 1=1:n-2
for j=i+l:n-1
for k=j+1:n
DrawTriangle(P(1),P(),P(k), " m™)
DrawPoints(P)
pause
DrawTriangle(P(i),P().,P(K), k")
end
end

end

Lecture 20 ES

CS1112 Lecture 20

Still get the same result if all three loop indices end

wich | [N
ijk
123 234 345 |456 |

124 235 346 -

i =4
125 236 356
126 245 i -3
134 246
for i=1:n
135 BD6 for j=i+l:n
136 i -2 for k=j+l:n
145 1= disp([i j KI)
146 S"d
en
156
. d
i = 1 en

Lecture 20 35

Structures with array fields
Let’s develop a structure that can be used to represent a
colored disk. It has four fields:

xc: x-coordinate of center
yc: y-coordinate of center

r: radius
c: rgb color vector
Examples:

D1 = struct(‘xc’,1,’yc’,2,’r’,3,..
‘c”,[1 0 11);

D2 = struct(“xc’,4,’yc’,0,’r”,1,..
‘c’,[-2 .5 .3D;

Lecture 20 a7

Example: Averaging two disks

D2

Lecture 20 a0

Example: compute “average” of two disks

% D1 and D2 are disk structures.
% Average is:
r = (@1l.r + D2.r) /2;

xc = (Dl.xc + D2.xc)/2;
yc = (D1l.yc + D2.yc)/2;
c = (l.c + D2.c) /2;

% The average is also a disk
D = struct(“xc’,xc,’yc’yc,’r’,r,’c”,c)

Lecture 20 a

How do you assign to g the green-color
component of disk D?

D= struct(“xc’,3.5, “yc’,2, ...
‘r’,1.0, “c’,[-4 .1 .5])

Lecture 20 a2

Lecture slides

Different kinds of abstraction

= Packaging procedures (program instructions) into a
function
= A program is a set of functions executed in the specified order
= Data is passed to (and from) each function
= Packaging data into a structure
= Elevates thinking

= Reduces the number of variables being passed to and from
functions

= Packaging data, and the instructions that work on those
data, into an object
= A program is the interaction among objects

= Object-oriented programming (OOP) focuses on the design of
data-instructions groupings

