- Previous Lecture (and Lab):
- Intro to the course, "Computational senses"
- The Matlab Command Window
- Today's Lecture:
- Anatomy of a program
- Variables, assignment, mathematical operations
- Functions for input \& output
- Announcements
- Due to the fixed lab capacity, you must attend the discussion section in which you are enrolled
- Consulting begins Tuesday in ACCEL Green Room (Carpenter Hall)

```
% Example 1_1: Surface area of a sphere
% A: surface area of the sphere
% r: radius of the sphere
r= input('Enter the radius: ');
A= 4*3.14159*r*r;
fprintf('Surface area is %f!\n', A)
```

Variable \& assignment

- Variable: a named computer memory space for storing a value

- Valid names start with a letter, can contain digits
- Use meaningful variable names!

Formula

- Surface area of a sphere? $\quad A=4 \pi r^{2}$
- Have the cosine of some angle and want $\cos (\theta / 2)$? $\theta \in\lfloor 0, \pi / 2\rfloor$

$$
\cos (\theta / 2)=\sqrt{\frac{1+\cos (\theta)}{2}}
$$

A computer program

Variable \& assignment

- Variable: a named space for storing a value

- Assignment: putting a value into a variable
- Assignment operator: =
- An assignment statement: $r=2 * 4.5$
- Expression on right-hand-side (rhs) is evaluated before the assignment operation

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:
x= 2*3.14
$y=1+x$
$z=4 \wedge 2-\cos (y)$
- Question: can we reverse the order of the 3 statements above?

Script execution (A script is a sequence of statements, a	-file")
$\begin{aligned} & \% \text { Quad1 } \\ & \% \text { Solves } x^{\wedge} 2+5 x+6=0 \\ & a \quad=1 ; \\ & b=5 ; \\ & c=6 ; \\ & d=\operatorname{sqrt}\left(b^{\left.\wedge 2-4^{*} a^{*} c\right) ;} \begin{array}{rl} r 1 & =(-b-d) /\left(2^{*} a\right) \\ r 2 & =(-b+d) /\left(2^{*} a\right) \end{array}\right. \end{aligned}$	Memory space
Leture 2	${ }^{21}$

```
Input & output
- variable = input( 'prompt ' )
    r= input('Enter radius: ')
- fprintf( 'message to print ')
fprintf('Increase ')
fprintf('is %f inches\n', x)
fprintf('Position (%d,%d)\n', x,y)
```

Matlab's built-in functions
-
-

-

\uparrow

-

Lecture 2

Statements in a program are executed in sequence
\% A program fragment ...
$\mathrm{x}=2 * 3.14$
$y=1+x$
$\mathrm{x}=5$
\% What is y now?

A: 6 B: 7.28 C: some other value, or error

Substitution sequences (conversion specifications)	
\%f	fixed point (or floating point)
\%d	decimal-whole number
\%e	exponential
\%g	general-Matlab chooses a format
\%c	character
\%s	string
Examples:	\%f \%15.2f
	${ }_{\text {Lecure } 2}$

Comments
- For readability!
- A comment starts with \% and goes to the end
of the line
- Start each program (script) with a concise
description of what it does
- Define each important variable/constant
- Top a block of code for a specific task with a
concise comment

Example

Modify the previous program to calculate the increase in surface area given an increase in the radius of a sphere.

Note: I mile $=5280$ feet

```
% Example 1_2: Surface area increase
% given an increase in the radius
r= input('Enter radius r in miles: ');
delta= input('Enter delta r in inches: ');
```

What's next?

- So far, all the statements in our scripts are
executed in order
- We do not have a way to specify that some
statements should be executed only under some
condition
- We need a new language construct...

Consider the quadratic function

$$
q(x)=x^{2}+b x+c
$$

on the interval $[L, R]$:

-Is the function strictly increasing in $[L, R]$?
-Which is smaller, $q(L)$ or $q(R)$?
-What is the minimum value of $q(x)$ in $[L, R]$?

Problem I

Write a code fragment that prints "yes" if $q(x)$ increases across the interval and "no" if it does not.

