- Previous Lecture (and Lab):
- Intro to the course, "Computational senses"
- The Matlab Command Window
- Today's Lecture:
- Anatomy of a program
- Variables, assignment, mathematical operations
- Functions for input \& output
- Announcements
- Due to the fixed lab capacity, you must attend the discussion section in which you are enrolled
- Consulting begins Tuesday in ACCEL Green Room (Carpenter Hall)

Formula

- Surface area of a sphere?

Formula

- Surface area of a sphere?

$$
A=4 \pi r^{2}
$$

Formula

- Surface area of a sphere?

$$
A=4 \pi r^{2}
$$

- Have the cosine of some angle and want $\cos (\theta / 2)$?

$$
\theta \in\lfloor 0, \pi / 2\rfloor
$$

Formula

- Surface area of a sphere?

$$
A=4 \pi r^{2}
$$

- Have the cosine of some angle and want $\cos (\theta / 2)$?

$$
\theta \in\lfloor 0, \pi / 2\rfloor
$$

$$
\cos (\theta / 2)=\sqrt{\frac{1+\cos (\theta)}{2}}
$$

\% Example 1_1: Surface area of a sphere \% A: surface area of the sphere $\% ~ r: ~ r a d i u s ~ o f ~ t h e ~ s p h e r e ~$
$r=$ input('Enter the radius: ');
A= 4*3.14159*r*r;
fprintf('Surface area is \%f! ${ }^{\prime}$ ', A)
\% Example 1_1: Surface area of a sphere \% A: surface area of the sphere $\% ~ r: ~ r a d i u s ~ o f ~ t h e ~ s p h e r e ~$
$r=$ input('Enter the radius: ');
A= 4*pi*r*r;
fprintf('Surface area is \%f! ${ }^{\prime}$ ', A)

A computer program

Variable \& assignment

- Variable: a named computer memory space for storing a value

Variable \& assignment

- Variable: a named computer memory space for storing a value

- Valid names start with a letter, can contain digits
- Use meaningful variable names!

Variable \& assignment

- Variable: a named space for storing a value

- Assignment: putting a value into a variable
- Assignment operator: =
- An assignment statement: $r=2 * 4.5$
- Expression on right-hand-side (rhs) is evaluated before the assignment operation

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

- Question: can we reverse the order of the 3 statements above?

Assignment

- Expression on rhs is evaluated before the assignment operation
- Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4^{\wedge} 2-\cos (y)
\end{aligned}
$$

- Question: can we reverse the order of the 3 statements above?
- NO! Any variable on the rhs must be initialized.

Assignment

 assignment operation

■ Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x \\
& z=4 \wedge 2-\cos (y)
\end{aligned}
$$

■ Ouestion: can we reverse the order of the 3
statements above?
■ NO! Any variable on the rhs must be initialized.

Matlab's built-in functions

■ Expression on rhs is evaluated before the assignment operation

■ Examples:

$$
\begin{aligned}
& x=2 * 3.14 \\
& y=1+x
\end{aligned}
$$

$$
z=4 \wedge 2-\cos (y)
$$

- Question: can we reverse the order of the 3
statements above?
■ NO! Any variable on the rhs must be initialized.

Matlab's built-in functions

- NO! Any variable on the rhs must be initialized.

Matlab's built-in functions

- Expression on rhs is evaluated before the assignment operation

■ Examples:

```
x= 2*3.14
y= 1+x
z= 4^2 - cos(y)
```

\square statements above?

Any variable

Script execution

(A script is a sequence of statements, an " m-file")

```
% Quad1
% Solves x^2 + 5x + 6 = 0
```

a $=1$;
b $=5$;
c $=6$;
d $=\operatorname{sqrt}\left(b^{\wedge 2}-4 * a * c\right)$;
$r 1=(-b-d) /(2 * a)$
$r 2=(-b+d) /(2 * a)$

Script execution

(A script is a sequence of statements, an " m-file")

```
% Quad1
% Solves x^2 + 5x + 6 = 0
```

Memory space
$\begin{array}{ll}\text { a } 1 \\ \text { b } & 5\end{array}$
c 6
d 1
r1-3
r2-2

Statements in a program are executed in sequence

```
% A program fragment
x= 2*3.14
y= 1+x
x= 5
% What is y now?
```

A: 6 B: 7.28 C: some other value, or error
\% Example 1_1: Surface area of a sphere \% A: surface area of the sphere $\% ~ r: ~ r a d i u s ~ o f ~ t h e ~ s p h e r e ~$
$r=$ input('Enter the radius: ');
A= 4*3.14159*r*r;
fprintf('Surface area is \%f! ${ }^{\prime}$ ', A)

Input \& output

- variable $=$ input (${ }^{\prime}$ prompt ' $)$
- fprintf('message to print ')

Input \& output

- variable $=$ input (${ }^{\prime}$ prompt ')

$r=$ input('Enter radius: ')

- fprintf('message to print ')
fprintf('Increase ')
fprintf('is \%f inches\n', x)
fprintf('Position (\%d,\%d)\n', x,y)

Substitution sequences

(conversion specifications)

\%f	fixed point (or floating point)
\%d	decimal—whole number
\%e	exponential
\%g	general—Matlab chooses a format
\%c	$\underline{\text { character }}$
\%s	$\underline{\text { string }}$

Examples: \%f \%15.2f

Comments

- For readability!
- A comment starts with \% and goes to the end of the line
- Start each program (script) with a concise description of what it does
- Define each important variable/constant
- Top a block of code for a specific task with a concise comment

Example

Modify the previous program to calculate the increase in surface area given an increase in the radius of a sphere.

Note: | mile $=5280$ feet
\% Example 1_2: Surface area increase \% given an increase in the radius
$r=$ input('Enter radius r in miles: '); delta= input('Enter delta r in inches: ');
\% Example 1_2: Surface area increase \% given an increase in the radius
$r=$ input('Enter radius r in miles: '); delta= input('Enter delta r in inches: '); newr= r + ((delta/12)/5280);
A= 4*pi* ${ }^{\wedge}{ }^{\wedge}$ 2;
newA= 4*pi*newr^2;
incr= newA - A;
fprintf('Increase in mile^2 is \%f. ${ }^{\prime}{ }^{\prime}$ ', incr)

