- Previous Lecture:
- Vectorized code
- 2-d array-matrix
- Today's Lecture:
- More examples on matrices
- Optional reading: contour plot (7.2, 7.3 in Insight)
- Announcements:
- Fall Break Mon \& Tues: no lec, dis, office/consulting hrs. Attendance at $10 / 16(\mathrm{~W})$ dis is optional, but the exercise is required. Attend any of the $10 / 16$ dis sections if you wish. Location is Upson B7 lab.
- Optional review sessions: W 5-6:30p, W 7-8:30p. Locations TBA

Storing and using data in tables						between webpages
A company has 3 factories that make 5 products with these costs:						
	10	36	22	15	62	
C	12	35	20	12	66	
						$\begin{array}{\|lllllll\|}0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0\end{array}$
	13	37	21	16	59	$\begin{array}{lllllll}1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1\end{array}$
What is the best way to fill a given purchase order?						$\left\lvert\, \begin{array}{lllllll}1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 0\end{array}\right.$
					Leture 13	\square

Matrix example: Random Web

- N web pages can be represented by an N-by-N Link Array A.
- $A(i, j)$ is I if there is a link on webpage j to webpage i
- Generate a random link array and display the connectivity:
- There is no link from a page to itself
- If $i \neq j$ then $A(i, j)=\|$ with probability $\frac{1}{1+|i-j|}$ \square There is more likely to be a link if i is close to j

```
function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages
A = zeros(n,n);
for i=1:n
    for j=1:n
        r = rand(1);
        if i~=j && r<= 1/(1 + abs(i-j));
                        A(i,j) = 1;
        end
    end
end
```

01110000010010000000 10001000111000000100 100010001110000000100
01010000000000000000 00101000000000000000 00010000001100000000 0000000000001010000 01111100010110000000 00000010000100000011 01000000010010001000 00000001101000000001 00000010000011000000 00000010010000000001 00010000110101100000 00000010000000110000 00000010000000110000 00000101000010010001 00000010001000001010 01000000100001010110 00000000000000011001 00000010000000000000 00000000000000001010

Represent the web pages graphically...

Bidirectional links are blue. Unidirectional link is black as it leaves page j , red when it arrives at page i.

Problems
A customer submits a purchase order that is to be filled by a single factory.
I. How much would it cost a factory to fill the order?
2. Does a factory have enough inventory/capacity to fill the order?
3. Among the factories that can fill the order, who can do it most cheaply?

The value of $\operatorname{Inv}(i, j)$ is the inventory in factory i of product j .

Finding the Cheapest

```
iBest = 0; minBill = inf;
for i=1:nFact
    iBill = iCost(i,C,PO);
    if iBill < minBill
        % Found an Improvement
        iBest = i; minBill = iBill;
    end
end
```

inf - a special value that can be regarded as positive infinity	
$\begin{aligned} & x=10 / 0 \\ & y=1+x \\ & z=1 / x \\ & w<i n f \end{aligned}$	assigns inf to x assigns inf to y assigns 0 to \mathbf{z} is always true if \mathbf{w} is numeric

Inventory/Capacity Considerations

What if a factory lacks the inventory/capacity to fill the purchase order?

Such a factory should be excluded from the find-the-cheapest computation.

Who Can Fill the Order?

Example: Check inventory of factory 2

PO

Method 1: check the
inventory for every product re 14

Still True...

Wanted: A True/False Function

D0 is "true" if factory i can fill the order. DO is "false" if factory i cannot fill the order.

Encapsulate...

function DO = iCanDo(i,Inv, PO)
\% DO is true if factory i can fill
\% the purchase order. Otherwise, false
nProd $=$ length (PO);
DO = 1;
for $\mathrm{j}=1: \mathrm{nProd}$
DO = DO \&\& ($\operatorname{Inv}(\mathrm{i}, \mathrm{j})$ >= PO(j));
end

Encapsulate...
function DO = iCanDo(i,Inv, PO)
\% DO is true if factory i can fill
\% the purchase order. Otherwise, false
nProd $=$ length(PO);
j = 1;
while $\mathrm{j}<=\mathrm{nProd} \& \& \operatorname{Inv}(\mathrm{i}, \mathrm{j})>=\mathrm{PO}(\mathrm{j})$
j $=\mathbf{j + 1}$;
end
DO = \qquad
DO should be true when... A j $<$ nProd
B j $==$ nProd
C
$j>n P r o d$


```
% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
    for c= 1: nc
        A(c,r)= M(r,c);
    end
end
A A is M with the columns in reverse order
BA}A\mathrm{ is }M\mathrm{ with the rows in reverse order
C A is the transpose of M
D A and M are the same
```

