- Previous Lecture:
- Vectors
- Color computation
- Linear interpolation
- Today's Lecture:
- Vectorized operations
- 2-d array-matrix
- Announcements:
- Discussion this week in classrooms as listed in Student Center
- Prelim I on 10/16 (Thursday) at 7:30pm

Drawing a polygon (multiple line segments)
\% Draw a rectangle with the lower-left \% corner at (a,b), width w, height h. $\begin{array}{ll} x=[&] ; \% x \text { data } \\ y=[&] ; \% \text { data } \\ \operatorname{plot}(x, y) & \end{array}$
Fill in the missing vector values!
Lecture 12

```
Coloring a polygon (fill)
    x=[[\begin{array}{lllll}{0.1}&{-9.2 -7 4.4];}\end{array}]
    y= [lllllll
    fill(x,y,'g')
```



```
    Can be a vector
```

 Can be a vector
 (RGB values)
    ```
    (RGB values)
```


Reciprocate

Matlab code:
Vectorized
See full list of ops in $\$ 4.1$
element-by-element arithmetic operations on arrays

| | |
| :---: | :---: |
| | |
| | |
| | |
| | |
| A dot (.) is necessary in front of these math operators | |
| Leture 12 | 19 |

| Element-by-element arithmetic operations on arrays... Also called "vectorized code" | |
| :---: | :---: |
| $\begin{aligned} & x=\operatorname{linspace} \\ & y=\sin \left(5^{*} x\right) \end{aligned}$ | $\begin{aligned} & 3,200) \\ & x p(-x / 2) . /(1+x . \wedge 2) ; \end{aligned}$ |
| Contrast with scalar operations that we've used previously... | |
| $\begin{aligned} & a=2.1 \\ & b=\sin \left(5^{*} a\right) \end{aligned}$ | The operators are (mostly) same; the operands may be scalars or vectors. |
| a and b are scalars | When an operand is a vector, you have "vectorized code." |
| Lecture 12 | |


```
Split a vector in 2-copy values into 2 vectors
% given row vector v
s= ceil(rand*length(v)); % split pt
x= zeros(1,s);
y= zeros(1,length(v)-s);
for k=1:s
    x(k)= v(k);
end
for k=1:length(y)
    y(k)= v(s+k);
end
Below is vectorized code:
multiple components
(subvectors) are
affected/accessed at the same
time:
x= v(1:s);
y=v(s+1:length(v));

Concatenating 2 vectors-copy 2 vectors into a new one
```

% given row vectors x and y
v= zeros(1,length(x)+length(y));
for k=1:length(x)
v(k)= x(k);
end
for k=1:length(y)
v(length(x)+k)= y(k);
end
This is non-vectorized code-operations are
This is non-vectorizedionent (scalar) at a time

```
    Lecture 13
```

Split a vector in 2—copy values into 2 vectors

```
Split a vector in 2—copy values into 2 vectors
% given row vector v
% given row vector v
s= ceil(rand*length(v)); % split pt
s= ceil(rand*length(v)); % split pt
x= zeros(1,s);
x= zeros(1,s);
y= zeros(1,length(v)-s);
y= zeros(1,length(v)-s);
for k=1:s
for k=1:s
    x(k)=v(k); This is non-vectorized
    x(k)=v(k); This is non-vectorized
end
end
for k=1:length(y)
for k=1:length(y)
    y(k)= v(s+k);
    y(k)= v(s+k);
end
end
        code-operations
        code-operations
        performed on one (scalar) at a
```

 performed on one (scalar) at a
    ```
                                    Lecture 13


\section*{Creating a matrix}
- Built-in functions: ones, zeros, rand
- E.g., zeros( 2,3 ) gives a 2-by-3 matrix of 0s
- "Build" a matrix using square brackets, [ ], but the dimension must match up:
- [ \(\mathrm{x} y]\) puts \(y\) to the right of \(x\)
- [ \(\mathrm{x} ; \mathrm{y}]\) puts y below x
- [403;5 I 9] creates the matrix

- [40 3; ones ( 1,3 )] gives \(\qquad\) \(\longrightarrow\)\begin{tabular}{|l|l|l|}
\hline 4 & 0 & 3 \\
\hline & 1 & 1 \\
\hline
\end{tabular}
- [4 0 3; ones( \(3, \mathrm{I})\) ] doesn't work

Example: minimum value in a matrix
function val \(=\) minlnMatrix \((M)\)

\% val is the smallest value in matrix \(M\)

\section*{2-d array: matrix}
- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g.,
\[
\operatorname{mat}(r, c)
\]
\(\qquad\)
refers to component in row \(r\), column \(c\) of matrix mat
- Array index starts at 1
- Rectangular: all rows have the same \#of columns

Lecture \({ }^{13}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Working with a matrix: size and individual components} & 2 & -1 & . 5 & 0 & -3 \\
\hline & 3 & 8 & 6 & 7 & 7 \\
\hline \multirow[t]{2}{*}{Given a matrix M} & 5 & -3 & 8.5 & 9 & 10 \\
\hline & 52 & 81 & . 5 & 7 & 2 \\
\hline \multicolumn{6}{|l|}{[nr, nc]= size(M) \% nr is \#of rows, \% nc is \#of columns} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{nr}=\operatorname{size}(\mathrm{M}, 1) \quad \% \text { \# of rows } \\
& \mathrm{nc}=\operatorname{size}(\mathrm{M}, ~ 2) \quad \% \text { \# of columns }
\end{aligned}
\]}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\[
\begin{aligned}
& M(2,4)=1 ; \\
& \operatorname{disp}(M(3,1))
\end{aligned}
\]} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{M}(1, \mathrm{nc})=4\);} \\
\hline Leature 13 & & & & & 40 \\
\hline
\end{tabular}

Pattern for traversing a matrix \(M\)
```

[nr, nc] = size(M)
for r= I:nr
% At row r
for c= l:nc
% At column c (in row r)
%
% Do something with M(r,c) ...
end
end

```
    Leture 13
```

% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr
for c= 1: nc
A(c,r)= M(r,c);
end
end
A is M with the columns in reverse order
B A is M with the rows in reverse order
C A is the transpose of M
D A and M are the same

```

Matrix example: Random Web
- N web pages can be represented by an N-by-N Link Array A.
- \(A(i, j)\) is \(I\) if there is a link on webpage \(j\) to webpage i
- Generate a random link array and display the connectivity:
- There is no link from a page to itself
- If \(i \neq j\) then \(A(i, j)=1\) with probability \(\frac{1}{1+|i-j|}\)
\(\square\) There is more likely to be a link if \(i\) is close to \(j\)
```

function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages
A = zeros(n,n);
for i=1:n
for j=1:n
r = rand(1);
if i~=j \&\& r<= 1/(1 + abs(i-j));
A(i,j) = 1;
end
end
end

```

01110000010010000000 10001000111000000100 0101000000000000000
 00010000001100000000 00000000000001010000 01111100010110000000 00000010000100000011 01000000010010001000 00000001101000000001 00000010000011000000 00000010010000000001 00010000110101100000 00000010000000110000 00000101000010010001 OODODO10001000001010 00000101001010 1000000100001010110 \(\begin{array}{lllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 100 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\) \(\left.\begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)\)
```

