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 Previous Lecture:
 Vectors
 Color computation
 Linear interpolation

 Today’s Lecture:
 Vectorized operations
 2-d array—matrix

 Announcements:  
 Discussion this week in classrooms as listed in Student Center
 Prelim 1 on 10/16 (Thursday) at 7:30pm
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Initialize arrays if dimensions are known
… instead of “building” the array one component 
at a time

% Build y on the fly
x=linspace(a,b,n);

for k=1:n
y(k)=myF(x(k));

end

% Initialize y
x=linspace(a,b,n);
y=zeros(1,n);
for k=1:n

y(k)=myF(x(k));
end

Much faster for large n!

Lecture 12 10

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left 

% corner at (a,b), width w, height h.

x= [a  a+w  a+w  a    a ]; % x data

y= [b  b    b+h  b+h  b ];  % y data

plot(x, y)

Fill in the missing vector values!
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x= [0.1 -9.2  -7  4.4];

y= [9.4  7   -6.2  -3];

fill(x,y,'g')
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Vectorized code
—a Matlab-specific feature

 Code that performs element-by-element 
arithmetic/relational/logical operations on array 
operands in one step

 Scalar operation:  x + y
where x, y are scalar variables

 Vectorized code:  x + y
where x and/or y are vectors.  If x and y are both 
vectors, they must be of the same shape and length

See Sec 4.1 for list of vectorized 
arithmetic operations
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Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y
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Vectorized multiplication

2 8.51a

1 102b×

2 802c=

Matlab code: c= a .* b
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Vectorized
element-by-element arithmetic operations
on arrays 

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

See full list of ops in §4.1
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Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3
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Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1
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./

A dot (.) is necessary in front of these math operators

Vectorized
element-by-element arithmetic operations between an 
array and a scalar 

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

See full list of ops in §4.1
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Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf




 for
-2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Element-by-element arithmetic 
operations on arrays 

Yes!

See plotComparison.m
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Element-by-element arithmetic operations on arrays…
Also called “vectorized code”

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used 
previously…

a = 2.1;
b = sin(5*a);
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Concatenating 2 vectors—copy 2 vectors into a new one

% given row vectors x and y

v= zeros(1,length(x)+length(y));

for k=1:length(x)

v(k)= x(k);

end

for k=1:length(y)

v(length(x)+k)= y(k);

end
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Concatenating 2 vectors—copy 2 vectors into a new one

% given row vectors x and y

v= zeros(1,length(x)+length(y));

for k=1:length(x)

v(k)= x(k);

end

for k=1:length(y)

v(length(x)+k)= y(k);

end
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Split a vector in 2—copy values into 2 vectors

% given row vector v

s= ceil(rand*length(v));  % split pt

x= zeros(1,s);

y= zeros(1,length(v)-s);

for k=1:s

x(k)= v(k);

end

for k=1:length(y)

y(k)= v(s+k);

end
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Split a vector in 2—copy values into 2 vectors

% given row vector v

s= ceil(rand*length(v));  % split pt

x= zeros(1,s);

y= zeros(1,length(v)-s);

for k=1:s

x(k)= v(k);

end

for k=1:length(y)

y(k)= v(s+k);

end

End of 
Prelim 1 material
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Storing and using data in tables

A company has 3 factories that make 5 
products with these costs:

Connections 
between webpages

0 0 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 1 1 1
1 0 1 1 0 1 0
0 0 1 1 0 1 1
0 0 1 0 1 0 1
0 1 1 0 1 1 0

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

What is the best way to fill a given  
purchase order?
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2-d array:  matrix

 An array is a named collection of like data organized 
into rows and columns

 A 2-d array is a table, called a matrix
 Two indices identify the position of a value in a matrix, 

e.g.,
mat(r,c)

refers to component in row r, column c of matrix mat
 Array index starts at 1
 Rectangular:  all rows have the same #of columns

c

r
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Creating a matrix

 Built-in functions: ones, zeros, rand
 E.g.,  zeros(2,3) gives a 2-by-3 matrix of 0s

 “Build” a matrix using square brackets, [ ], but 
the dimension must match up:
 [x  y] puts y to the right of x
 [x; y] puts y below x
 [4 0 3; 5 1 9] creates the matrix
 [4 0 3; ones(1,3)] gives 
 [4 0 3; ones(3,1)] doesn’t work

4 0 3
5 1 9

4 0 3
1 1 1
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Working with a matrix:  
size and individual components

Given a matrix M 

[nr, nc]= size(M) % nr is #of rows, 
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;

2 0.5-1 -3

52 7.581 2
5 98.5-3 10
3 768 7
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Example:  minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M
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Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)
%
% Do something with M(r,c) …

end
end
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% Given an nr-by-nc matrix M.
% What is A? 
for  r= 1: nr

for c= 1: nc
A(c,r)= M(r,c);

end
end

a. A is M with the columns in reverse order
b. A is M with the rows in reverse order
c. A is the transpose of M
d. A and M are the same

A

B

C
D
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Matrix example: Random Web

 N web pages can be represented by an 
N-by-N  Link Array A.

 A(i,j) is 1 if there is a link on webpage j to 
webpage i

 Generate a random link array and display the 
connectivity:
 There is no link from a page to itself
 If i≠j then A(i,j) = 1 with probability

 There is more likely to be a link if i is close to j
||1

1
ji
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function A = RandomLinks(n) 
% A is n-by-n matrix of 1s and 0s
% representing n webpages

A = zeros(n,n);
for i=1:n
for j=1:n
r = rand(1);
if i~=j && r<= 1/(1 + abs(i-j));

A(i,j) = 1;
end

end
end
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0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Random web
N = 20

54

Bidirectional links are blue. Unidirectional 
link is black as it leaves page j, red when it 

arrives at page i.

Represent the web pages graphically…
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Is there another way? See
ShowRandomLinks.m


