
CS1112 Lecture 13

Lecture slides 1

 Previous Lecture:
 Vectors
 Color computation
 Linear interpolation

 Today’s Lecture:
 Vectorized operations
 2-d array—matrix

 Announcements:
 Discussion this week in classrooms as listed in Student Center
 Prelim 1 on 10/16 (Thursday) at 7:30pm

Lecture 13 9

Initialize arrays if dimensions are known
… instead of “building” the array one component
at a time

% Build y on the fly
x=linspace(a,b,n);

for k=1:n
y(k)=myF(x(k));

end

% Initialize y
x=linspace(a,b,n);
y=zeros(1,n);
for k=1:n

y(k)=myF(x(k));
end

Much faster for large n!

Lecture 12 10

Drawing a polygon (multiple line segments)

% Draw a rectangle with the lower-left

% corner at (a,b), width w, height h.

x= [a a+w a+w a a]; % x data

y= [b b b+h b+h b]; % y data

plot(x, y)

Fill in the missing vector values!

Lecture 12 14

x= [0.1 -9.2 -7 4.4];

y= [9.4 7 -6.2 -3];

fill(x,y,'g')

-10 -5 0 5
-8

-6

-4

-2

0

2

4

6

8

10

Can be a vector
(RGB values)

Coloring a polygon (fill)

Lecture 12 15

Vectorized code
—a Matlab-specific feature

 Code that performs element-by-element
arithmetic/relational/logical operations on array
operands in one step

 Scalar operation: x + y
where x, y are scalar variables

 Vectorized code: x + y
where x and/or y are vectors. If x and y are both
vectors, they must be of the same shape and length

See Sec 4.1 for list of vectorized
arithmetic operations

Lecture 12 16

Vectorized addition

2 8.51x

1 102y+

3 9.53z=

Matlab code: z= x + y

CS1112 Lecture 13

Lecture slides 2

Lecture 12 18

Vectorized multiplication

2 8.51a

1 102b×

2 802c=

Matlab code: c= a .* b

Lecture 12 19

Vectorized
element-by-element arithmetic operations
on arrays

+

-

.*

./

A dot (.) is necessary in front of these math operators

.^

See full list of ops in §4.1

Lecture 12 20

Shift

2 8.51

x

y+

5 113.54z=

Matlab code: z= x + y

3

Lecture 12 21

Reciprocate

2 8.51

x

y/

.5 .12521z=

Matlab code: z= x ./ y

1

Lecture 12 22

./

A dot (.) is necessary in front of these math operators

Vectorized
element-by-element arithmetic operations between an
array and a scalar

+

-

*

/

+

-

*

.^ .^

.* .* ./The dot in not necessary but OK, ,

See full list of ops in §4.1

Lecture 12 23

Can we plot this?

21

)2/exp()5sin(
)(

x

xx
xf




 for
-2 <= x <= 3

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Element-by-element arithmetic
operations on arrays

Yes!

See plotComparison.m

CS1112 Lecture 13

Lecture slides 3

Lecture 12 24

Element-by-element arithmetic operations on arrays…
Also called “vectorized code”

x = linspace(-2,3,200);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);

Contrast with scalar operations that we’ve used
previously…

a = 2.1;
b = sin(5*a);

Lecture 13 28

Concatenating 2 vectors—copy 2 vectors into a new one

% given row vectors x and y

v= zeros(1,length(x)+length(y));

for k=1:length(x)

v(k)= x(k);

end

for k=1:length(y)

v(length(x)+k)= y(k);

end

Lecture 13 29

Concatenating 2 vectors—copy 2 vectors into a new one

% given row vectors x and y

v= zeros(1,length(x)+length(y));

for k=1:length(x)

v(k)= x(k);

end

for k=1:length(y)

v(length(x)+k)= y(k);

end

Lecture 13 33

Split a vector in 2—copy values into 2 vectors

% given row vector v

s= ceil(rand*length(v)); % split pt

x= zeros(1,s);

y= zeros(1,length(v)-s);

for k=1:s

x(k)= v(k);

end

for k=1:length(y)

y(k)= v(s+k);

end

Lecture 13 34

Split a vector in 2—copy values into 2 vectors

% given row vector v

s= ceil(rand*length(v)); % split pt

x= zeros(1,s);

y= zeros(1,length(v)-s);

for k=1:s

x(k)= v(k);

end

for k=1:length(y)

y(k)= v(s+k);

end

End of
Prelim 1 material

Lecture 13 35

CS1112 Lecture 13

Lecture slides 4

Lecture 13 36

Storing and using data in tables

A company has 3 factories that make 5
products with these costs:

Connections
between webpages

0 0 1 0 1 0 0
1 0 0 1 1 1 0
0 1 0 1 1 1 1
1 0 1 1 0 1 0
0 0 1 1 0 1 1
0 0 1 0 1 0 1
0 1 1 0 1 1 0

C

10 36 22 15

12 35 20 12

13 37 21 16

66

62

59

What is the best way to fill a given
purchase order?

Lecture 13 37

2-d array: matrix

 An array is a named collection of like data organized
into rows and columns

 A 2-d array is a table, called a matrix
 Two indices identify the position of a value in a matrix,

e.g.,
mat(r,c)

refers to component in row r, column c of matrix mat
 Array index starts at 1
 Rectangular: all rows have the same #of columns

c

r

Lecture 13 39

Creating a matrix

 Built-in functions: ones, zeros, rand
 E.g., zeros(2,3) gives a 2-by-3 matrix of 0s

 “Build” a matrix using square brackets, [], but
the dimension must match up:
 [x y] puts y to the right of x
 [x; y] puts y below x
 [4 0 3; 5 1 9] creates the matrix
 [4 0 3; ones(1,3)] gives
 [4 0 3; ones(3,1)] doesn’t work

4 0 3
5 1 9

4 0 3
1 1 1

Lecture 13 40

Working with a matrix:
size and individual components

Given a matrix M

[nr, nc]= size(M) % nr is #of rows,
% nc is #of columns

nr= size(M, 1) % # of rows
nc= size(M, 2) % # of columns

M(2,4)= 1;
disp(M(3,1))
M(1,nc)= 4;

2 0.5-1 -3

52 7.581 2
5 98.5-3 10
3 768 7

Lecture 13 45

Example: minimum value in a matrix

function val = minInMatrix(M)
% val is the smallest value in matrix M

Lecture 13 47

Pattern for traversing a matrix M

[nr, nc] = size(M)
for r= 1:nr

% At row r
for c= 1:nc

% At column c (in row r)
%
% Do something with M(r,c) …

end
end

CS1112 Lecture 13

Lecture slides 5

Lecture 13 48

% Given an nr-by-nc matrix M.
% What is A?
for r= 1: nr

for c= 1: nc
A(c,r)= M(r,c);

end
end

a. A is M with the columns in reverse order
b. A is M with the rows in reverse order
c. A is the transpose of M
d. A and M are the same

A

B

C
D

Lecture 13 50

Matrix example: Random Web

 N web pages can be represented by an
N-by-N Link Array A.

 A(i,j) is 1 if there is a link on webpage j to
webpage i

 Generate a random link array and display the
connectivity:
 There is no link from a page to itself
 If i≠j then A(i,j) = 1 with probability

 There is more likely to be a link if i is close to j
||1

1
ji

Lecture 13 51

function A = RandomLinks(n)
% A is n-by-n matrix of 1s and 0s
% representing n webpages

A = zeros(n,n);
for i=1:n
for j=1:n
r = rand(1);
if i~=j && r<= 1/(1 + abs(i-j));

A(i,j) = 1;
end

end
end

Lecture 13 52

0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Random web
N = 20

54

Bidirectional links are blue. Unidirectional
link is black as it leaves page j, red when it

arrives at page i.

Represent the web pages graphically…

Lecture 13 55

Is there another way? See
ShowRandomLinks.m

