- Previous Lecture:

- Examples on vectors and simulation
- Today's Lecture:
- Finite vs. Infinite; Discrete vs. Continuous
- Vectors and vectorized code

Color computation with linear interpolation

- plot and fill
- Announcements:
- Project 3 due Friday 10/3 at IIpm
- Prelim I on Oct $16^{\text {th }}$ at $7: 30$ pm. Email Randy Hess (rbh27) now if you have an exam conflict (specify conflicting course and instructor contact info)

Xeno's Paradox

- A wall is two feet away
- Take steps that repeatedly halve the remaining distance
- You never reach the wall because the distance traveled after n steps $=$

$$
1+1 / 2+1 / 4+\ldots+1 / 2^{n}=2-1 / 2^{n}
$$

Example: "Xeno" disks

Draw a sequence of 20 disks where the $(k+1)$ th disk has a diameter that is half that of the kth disk.

The disks are tangent to each other and have centers on the x -axis.

First disk has diameter I and center ($1 / 2,0$).

Example: "Xeno" disks


```
% Xeno Disks
```

% Xeno Disks
DrawRect(0, -1, 2, 2, 'k')
DrawRect(0, -1, 2, 2, 'k')
% Draw 20 Xeno disks
% Draw 20 Xeno disks
d= 1;
d= 1;
x= 0; % Left tangent point
x= 0; % Left tangent point
for k= 1:20
for k= 1:20
% Draw kth disk
% Draw kth disk
% Update x, d for next disk
% Update x, d for next disk
end

```


Fading Xeno disks

```

% Draw n fading Xeno disks
d= 1;
x= 0; % Left tangent point
yellow= [1 1 0];
black= [0 0 0];
for k= 1:n
% Compute color of kth disk
% Draw kth disk
DrawDisk(x+d/2, 0, d/2,

```
\(\qquad\)
```

 x= x+d;
 d= d/2;
 end
Lecture 12


```
\% Draw n fading Xeno disks
\(\mathrm{d}=1\);
\(\mathrm{x}=0\); \% Left tangent point
yellow= [11 10\(]\);
black= [lll 000\(] ;\)
k/n
\(k /(n-1)\)
(k-1)/n
\((k-1) /(n-1)\)
\((k-1) /(n+1)\)
for \(k=1: n\)
    \% Compute color of kth disk
        \(\mathrm{f}=\) ???
        colr= f*black + (1-f)*yellow;
        \% Draw kth disk
        DrawDisk(x+d/2, 0, d/2, colr)
        x= \(\mathrm{x}+\mathrm{d}\);
        \(d=d / 2\);
end

Does this script print anything?
k = 0;
while \(1+1 / \mathbf{2}^{\wedge} \mathrm{k}>1\)
k = k+1;
end
disp(k)

\section*{Linear interpolation}
\begin{tabular}{|c|c|c|}
\hline \(\times\) & \(g(x)\) & \multirow[b]{2}{*}{\(g(10.5)=\frac{1}{2} g(11)+\frac{1}{2} g(10)\)} \\
\hline : & g(x) & \\
\hline 9 & 110 & \\
\hline 10 & 118 & \(g(10)=0 / 4 \cdot g(11)+4 / 4 \cdot g(10)\) \\
\hline 10.25 & ? & \(g(10.25)=1 / 4 \cdot g(11)+3 / 4 \cdot g(10)\)
\(g(10.50)=2 / 4 \cdot g(11)+2 / 4 \cdot g(10)\) \\
\hline 10.50 & ? & \(g(10.75)=3 / 4 \cdot g(11)+1 / 4 \cdot g(10)\) \\
\hline 10.75 & ? & \(g(11 \quad)=4 / 4 \cdot g(11)+0 / 4 \cdot g(10)\) \\
\hline 11 & 126 & \\
\hline 12 & 134 & \(f \cdot g(11)+(1-f) \cdot g(10)\) \\
\hline & & Lecture 12 \\
\hline
\end{tabular}

Rows of Xeno disks
for \(y=\ldots \quad: \quad]_{-}\)
Code to draw one row of Xeno disks at some \(y\)-coordinate
end


Computer Arithmetic-floating point arithmetic

Suppose you have a calculator with a window like this:

representing \(2.41 \times 10^{-3}\)

Floating point addition


\section*{Result:}


The loop DOES terminate given the limitations of floating point arithmetic!
```

k = 0;
while 1 + 1/2^k > 1
k = k+1;
end
disp(k)

```
\(1+1 / 2^{\wedge} 53\) is calculated to be just 1 , so " 53 " is printed.


Computer arithmetic is inexact
- There is error in computer arithmetic-floating point arithmetic-due to limitation in "hardware." Computer memory is finite.
- What is \(1+10^{-16}\) ?
- 1.000000000000000 I in real arithmetic
- I in floating point arithmetic (IEEE)
- Read Sec 4.3
element-by-element arithmetic operations between an array and a scalar
\(\left.\begin{array}{|ll|}\hline \begin{array}{l}\text { Vectorized code } \\
- \text { a Matlab-specific feature }\end{array} \\
\text { - Code that performs element-by-element } \\
\text { arithmetic/relational/logical operations on array } \\
\text { operands in one step } \\
\text { arithmetic operations }\end{array}\right]\)\begin{tabular}{l} 
Scalar operation: \(x+y\) \\
where \(x, y\) are scalar variables \\
- Vectorized code: \(x+y\) \\
where \(x\) and/or \(y\) are vectors. If \(x\) and \(y\) are both \\
vectors, they must be of the same shape and length \\
Leture 12
\end{tabular}



Element-by-element arithmetic operations on arrays...
Also called "vectorized code"
\[
\begin{aligned}
& x=\operatorname{linspace}(-2,3,200) ; \quad x \text { and } y \text { are } \\
& y=\sin \left(5^{*} x\right) \cdot * \exp (-x / 2) \cdot /(1+x . \wedge 2) ;
\end{aligned}
\]

Contrast with scalar operations that we've used previously...
a \(=2.1\);
b \(=\sin \left(5^{*} a\right)\);

\(a\) and \(b\) are scalars

The operators are (mostly) the same; the operands may be scalars or vectors.
When an operand is a vector, you have "vectorized code." lecture 12```

