
 Previous Lecture:
 1-d array—vector
 Probability and random numbers

 Today’s Lecture:
 More examples on vectors and simulation

 Announcement:
 Discussion this week in Upson B7 lab
 Project 3 due on Fri 10/3

Lecture 10 2

function count = rollDie(rolls)

FACES= 6; % #faces on die
count= zeros(1,FACES); % bins to store counts

% Count outcomes of rolling a FAIR die
for k= 1:rolls

% Roll the die
face= ceil(rand*FACES);
% Increment the appropriate bin
count(face)= count(face) + 1;

end

% Show histogram of outcome

0 0 0 0 0count 0
1 43 5 62

Lecture 10 3

% Simulate the rolling of 2 fair dice
totalOutcome= ???

ceil(rand*12)
ceil(rand*11)+1
floor(rand*11)+2

2 of the above
None of the above

A
B
C
D
E

Lecture 11 4

Simulation

 Imitates real system
 Requires judicious use of random numbers
 Requires many trials
 opportunity to practice working with vectors!

N = 11 Hops = 67

Lecture 11 5

Loop patterns for working with a vector

% Given a vector v

for k = 1:length(v)

% Work with v(k)
% E.g., disp(v(k))

end

% Given a vector v
k = 1;
while k <= length(v)

% Work with v(k)
% E.g., disp(v(k))

k = k+1;

end

Lecture 11 11

2-dimensional random walk
N = 11 Hops = 67

Start in the middle tile,
(0,0).

For each step,
randomly choose
between N,E,S,W and
then walk one tile.
Each tile is 1×1.

Walk until you reach
the boundary.

Lecture 11 12

function [x, y] = RandomWalk2D(N)
% 2D random walk in 2N-1 by 2N-1 grid.
% Walk randomly from (0,0) to an edge.
% Vectors x,y represent the path.

x

y

By the end of the function …

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while not at an edge
% Choose random dir, update xc,yc

% Record new location in x, y

end

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while abs(xc)<N && abs(yc)<N
% Choose random dir, update xc,yc

% Record new location in x, y

end

function [x, y] = RandomWalk2D(N)

k=0; xc=0; yc=0;

while abs(xc)<N && abs(yc)<N
% Choose random dir, update xc,yc

% Record new location in x, y
k=k+1; x(k)=xc; y(k)=yc;

end

Lecture 11 16

% Standing at (xc,yc)
% Randomly select a step

r= rand(1);
if r < .25

yc= yc + 1; % north
elseif r < .5

xc= xc + 1; % east
elseif r < .75

yc= yc -1; % south
else

xc= xc -1; % west
end

See RandomWalk2D.m

Lecture 11 17

Another representation for the random step

 Observe that each update has the form
xc= xc + ∆x
yc= yc + ∆y

no matter which direction is taken.
 So let’s get rid of the if statement!
 Need to create two “change vectors” deltaX and

deltaY
deltaX

deltaY

See RandomWalk2D_v2.m

Lecture 11 18

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Lecture 11 19

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Example: polygon smoothing

Can store the x-y
coordinates in
vectors x and y

x y

Lecture 11 20

−3 −2 −1 0 1 2 3 4 5 6 7
−2

−1

0

1

2

3

4

5

6

After

Before

First operation: centralize

Move a polygon so that the centroid
of its vertices is at the origin

Lecture 11 21

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

Lecture 11 22

function [xNew,yNew] = Centralize(x,y)
% Translate polygon defined by vectors
% x,y such that the centroid is on the
% origin. New polygon defined by vectors
% xNew,yNew.

n = length(x);
xBar = sum(x)/n; yBar = sum(y)/n;
xNew = zeros(n,1); yNew = zeros(n,1);
for k = 1:n

xNew(k) = x(k)-xBar;
yNew(k) = y(k)-yBar;

end

sum returns the sum of all
values in the vector

Lecture 11 25

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Before

After

Second operation: normalize

Shrink (enlarge) the polygon so that
the vertex furthest from the
(0,0) is on the unit circle

Lecture 11 26

function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

Lecture 11 27

function [xNew,yNew] = Normalize(x,y)
% Resize polygon defined by vectors x,y
% such that distance of the vertex
% furthest from origin is 1

n = length(x);
for k = 1:n

d(k) = sqrt(x(k)^2 + y(k)^2);
end
maxD = max(d);
xNew = zeros(n,1); yNew = zeros(n,1);
for k = 1:n

xNew(k)=x(k)/maxD; yNew(k)=y(k)/maxD;
end

Applied to a vector, max returns
the largest value in the vector

Lecture 11 29

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Third operation: smooth

Obtain a new polygon by connecting
the midpoints of the edges

Lecture 11 30

function [xNew,yNew] = Smooth(x,y)
% Smooth polygon defined by vectors x,y
% by connecting the midpoints of
% adjacent edges

n = length(x);
xNew = zeros(n,1);
yNew = zeros(n,1);
for i=1:n

%Compute midpt of ith edge. Store in xNew(i), yNew(i)

end

Lecture 11 31

xNew(1) = (x(1)+x(2))/2
yNew(1) = (y(1)+y(2))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 32

xNew(2) = (x(2)+x(3))/2
yNew(2) = (y(2)+y(3))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 33

xNew(3) = (x(3)+x(4))/2
yNew(3) = (y(3)+y(4))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 34

% Given n, x, y
for i=1:n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Polygon Smoothing

Does above fragment compute the new n-gon?
A: Yes

B: No

Lecture 11 35

xNew(4) = (x(4)+x(5))/2
yNew(4) = (y(4)+y(5))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 36

xNew(5) = (x(5)+x(1))/2
yNew(5) = (y(5)+y(1))/2

(x4,y4)

(x1,y1)

(x3,y3)

(x2,y2)

(x5,y5)

Lecture 11 37

for i=1:n
xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end

Will result in a subscript
out of bounds error when i is n.

Smooth

Lecture 11 38

for i=1:n
if i<n

xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

else
xNew(n) = (x(n) + x(1))/2;
yNew(n) = (y(n) + y(1))/2;

end
end

Smooth

Lecture 11 39

for i=1:n-1
xNew(i) = (x(i) + x(i+1))/2;
yNew(i) = (y(i) + y(i+1))/2;

end
xNew(n) = (x(n) + x(1))/2;
yNew(n) = (y(n) + y(1))/2;

Smooth

Lecture 11 40

Show a simulation of polygon smoothing

Create a polygon with randomly located vertices.

Repeat:
Centralize
Normalize
Smooth

See ShowSmooth.m

