CS1112 Discussion Exercise 3

1 Multiples of k

The following program reads an integer k and outputs all the multiples of k up to 1000 . Fill in the blank.

```
k = input('Please enter a positive integer smaller than 1000: ');
for j = _----------------------
    fprintf('%d ', j);
end
fprintf('\n');
```


2 Approximate square root (again!)

The square root of a positive value A can be computed by building "increasingly square" rectangles with area A. Write a script to solicit a positive value A and an a positive integer N. Then compute \sqrt{A} by building N increasingly square rectangles. Let the first rectangle have length A and width 1 . The final square root value is the average of the length and width of the N th rectangle.

Do not use arrays, i.e., you will use scalar variables L and W for the length and width of a rectangle, respectively.

3 Approximate π

[Modified from Insight Exercise P2.1.5] For large n,

$$
\begin{aligned}
& T_{n}=1+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}=\sum_{k=1}^{n} \frac{1}{k^{2}} \quad \approx \frac{\pi^{2}}{6} \\
& R_{n}=1-\frac{1}{3}+\cdots+\frac{(-1)^{n+1}}{2 n-1}=\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2 k-1} \approx \frac{\pi}{4}
\end{aligned}
$$

giving two different ways to estimate π :

$$
\begin{aligned}
& \tau_{n}=\sqrt{6 T_{n}} \\
& \rho_{n}=4 R_{n}
\end{aligned}
$$

Write a script that displays the value of $\left|\pi-\rho_{n}\right|$ and $\left|\pi-\tau_{n}\right|$ for $n=100,200, \ldots, 1000$ in one table. Do not use arrays.

