CS1112 Lab Exercise 8

1 Subarrays

Type the following expressions in the Matlab Command Window. Write the resulting array or answer the question on the blank.

```
A= [llllll
b= A(3)
C=A(3:5)
```



```
D= [A; ...
    ones(1,5); ...
    4*ones(1,5)]
        %
```



```
E= D(1:3,2:4) % _-------------------------------------
F= D(:,2) %
    _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_--
% What does the colon mean when it is used where indices are expected?
% Ask for help now if you are unsure how to access a subarray
```


2 Determinant of a 3×3 matrix

Write a function myDeterminant (x), where x is a 3×3 matrix. Use the following formula:

$$
\operatorname{det}\left(\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\right)=a \operatorname{det}\left(\left(\begin{array}{cc}
e & f \\
h & i
\end{array}\right)\right)-b \operatorname{det}\left(\left(\begin{array}{cc}
d & f \\
g & i
\end{array}\right)\right)+c \operatorname{det}\left(\left(\begin{array}{cc}
d & e \\
g & h
\end{array}\right)\right)
$$

Use the built-in function det to find the determinants of 2×2 matrices. For example, det (m) returns the determinant of 2×2 matrix m . This question is all about accessing individual components or submatrices in a matrix. Recall that you can construct a matrix by putting two row vectors one below the other or two column vectors side by side.

3 Random walk

A random walk that starts from the center of a 21×21 grid ends when a boundary is reached. On average which "square" or grid point is visited most often? Function RandomWalk2D can be found on the Lecture Materials page of the course website (lecture 11).

4 Bounded random walk

In a bounded random walk, a set number of steps are taken within a bounded area. For example, when the right boundary (excluding the corners) is reached, the next step can go left, up, or down only. Similarly, when a corner is reached, the next steps can be in two directions only. For a 100-step bounded random walk in a 21×21 grid, which "square" is visited most often?

Please delete your files from the computer before leaving the lab.

