CS1112 Lab Exercise 14

Efficient calculation of x^{n} where n is large

If you cannot use Matlab's power operator ^ how would you calculate x to the n-th power? One way is to use iteration-a loop that executes $n-1$ times. Another strategy is recursion-repeated squaring in this case. The idea is illustrated with the following schematic that shows how to compute x^{21} :

$$
\begin{aligned}
& \begin{aligned}
x^{21}= & \left(x^{10}\right)^{2} \cdot x \\
& \longrightarrow x^{10}=\left(x^{5}\right)^{2}
\end{aligned} \\
& \longrightarrow x^{5}=\left(x^{2}\right)^{2} \cdot x \\
& x^{2}=(x)^{2}
\end{aligned}
$$

The recursive definition behind the scenes is given by

$$
f(x, n)= \begin{cases}1 & \text { if } n=0 \\ f(x, n / 2) \cdot f(x, n / 2) & \text { if } n>0 \text { and } n \text { is even } \\ f(x,(n-1) / 2) \cdot f(x,(n-1) / 2) \cdot x & \text { if } n>0 \text { and } n \text { is odd }\end{cases}
$$

Write the following function based on the recursive strategy. Do not use loops.

```
function y = Power(x, n)
% y = x^n where n is an integer >=0
```

