Lecture 23:
More Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements

Next Tuesday:
= Lecture is a review session.
=" There will be no post-lecture office hours.

Course Staff also hosting additional review
sessions (possibly during study days).
Announcements forthcoming.

Search Algorithms

Recall from last lecture:
e Searching for data is a common task
= Linear search: on the order of n
e input doubles? - work doubles!
= Binary search: on the order of log2 n

e input doubles? = work increases by just 1 unit!
e BUT data needs to be sorted...

e Sorting data now suddenly interesting...

Sorting Algorithms

e Sorting data is a common task

= |nsertion sort: on the order of n?
e input doubles? = work quadruples! (yikes)

e Today's topic:

= Merge sort: can we do better than Insertion Sort?

Which algorithm does Python’s sort use?

e Recursive algorithm that runs much faster than
insertion sort for the same size list (when the size is big)!

e Avariant of an algorithm called “merge sort”

e Based on the idea that sorting is hard, but “merging”
two already sorted lists is easy.

L (1117119 R114(15]|16 |18

merge

— meree L—

L [11]14(15]16|17 (18|19

Merge sort: Motivation

— —

Since merging is easier than sorting, if |
had two helpers, I'd...

7

¢ Give each helper half the array to sort

—— eThen | get back their sorted suba@s
and merge them.

Q What if those two helpers
O each had two sub-helpers?

O And the sub-helpers each had
two sub-sub-helpers? And...

Subdivide the sorting task

lelujcle|x|ajo|rjrleipfrfcfsfN
Bleujeis|x|ajof |Flu]eip|r]c|s|N

Subdivide again

leujeie|x|ajof |Flu]ep|r]c|I|N

mlejujef|s|x]ajo] [Flr]e|p] [rfcfsfy

And again

[T T T T T T T T ITTT]
[T T T I T I ITT]

mlefujef|s|x]ajo| [Flr]e|p] [rfcfsfy
[e]=]

10

And one last time

[T I T T T TTTTTTTITTT]
[TTTTITT] [CIIITTTT]

(TITJLI Iy CIf1) CITT]

[e]=] [u]e] [e]x] [a]e]
[Ell=] []le][=]lx] [2][e] [e][=][=][=] [=][c] [2] [x]

Now merge

ENNEEENEEEEEEEER
(LIl LI IITT

Lty Cifry tiffd

[=]z] [c]v] [e]x] [a]e]
[el[=] [w]lc]{=]lx] [2][e] [e][=][=][=] [=][c] [2n]

And merge again

ENNEEENEEEEEEEER
(LIl LI IITT

elclulu| |ajelx]o| [p]F]r]e]| |c|s|N]r
=]a] [c]v]

13

And again

ENNEEENEEEEEEEER

2le|ejcla]xfufo
Elc|ulu| |a]e]x]o

clojrjojuinjefr
plejuje| [cfsfnfr

14

And one last time

rlejcfolefrfcfu|sx|ru]n]r]o|r

rlelejcfuixfufo

clojrjojuinfefr

15

Done!

rlejcfolefrfcfu|sx|ru]n]r]o|r

16

def mergeSort(1li):
"""Sort list 1i using Merge Sort"""
if len(1li) > 1:
Divide into two parts
mid= len(1i)//2
left= 1i[:mid]
right= li[mid:]

Recursive calls
mergeSort(left)
mergeSort(right)

Merge left & right back to 11
pP?

base case does nothing!
a list with len @ or 1 is sorted!

The central sub-problem is the merging of two
sorted lists into one single sorted list

‘12‘33‘35‘45‘ Approach:
keep comparing the
smallest element of first
list with smallest
element of second list.

‘15‘42‘55‘65‘75‘

‘12‘15‘33‘35‘42‘45‘55‘65‘75‘

How to Merge as long as both x and y

have unprocessed elements
Jil x[i] <= y[3]
% ‘12‘33‘35‘45‘ Coe i@
3t
y [15]42]55]65]75] i[o]

How to Merge as long as both x and y

have unprocessed elements
Jil x[i] <= y[3]
x‘12‘33‘35‘45‘ Coe i@
J:L. copy x[i] to z

y [15]42]55]65]75] i[o]

L
L TTTT T e

How to Merge as long as both x and y

have unprocessed elements

@ x[1] <= y[]] ?
% ‘12‘33‘35‘45‘ o i
4L
y [15]42]55]65]75] i[o]

L
L TT T T T [

How to Merge as long as both x and y

have unprocessed elements

@ x[1] <= y[3] ?
x‘12‘33‘35‘45‘ o i
@ copy y[Jj] to z

y [15]42]55]65]75] i[o]

L
S 1 EE I I I

How to Merge as long as both x and y

have unprocessed elements

@ x[1] <= y[]] ?

% ‘12‘33‘35‘45‘ Coe i
b

y [15]42]55]e5]75] i[1]

L
S 2 E I I I I I D

How to Merge as long as both x and y

have unprocessed elements

& x[i] <= y[]] ?
x‘12‘33‘35‘45‘ Coe i
@ copy x[i] to z

y [15]42]55]e5]75] i[1]

L
N EE EE X I I I I I s

How to Merge as long as both x and y

have unprocessed elements

@ x[1] <= y[]j] ?
% ‘12‘33‘35‘45‘ Coe i
4L
y [15]42]55]e5]75] i[1]

L
S EC EE EE I I I I I e N

How to Merge as long as both x and y

have unprocessed elements

Jil X[i] <= y[j]
x‘12‘33‘35‘45‘ Coe i
@ copy x[i] to z

y [15]42]55]e5]75] i[1]

L
o EE EE3 XY X I I I I O I

How to Merge as long as both x and y

have unprocessed elements

b x[i] <= y[§] ?
% ‘12‘33‘35‘45‘ o i
gl
y [15]42]55]e5]75] i[1]

L
o EE EE3 XY X I I I I I e

How to Merge as long as both x and y

have unprocessed elements

Jil X[i] <= y[j]
x‘12‘33‘35‘45‘ o i
@ copy y[Jj] to z

y [15]42]55]e5]75] i[1]

L
S EE EE3 EEY EE 21 I I I I s

How to Merge as long as both x and y

have unprocessed elements

S [4] <= y[9] 2
% ‘12‘33‘35‘45‘ Coe i
4L
y [15]42]55]e5]75] i[2]

L
o EE EE3 EEY EE 21 0 I I I s

How to Merge as long as both x and y

have unprocessed elements

Jil X[i] <= y[j]
x‘12‘33‘35‘45‘ Coe i
@ copy x[i] to z

y [15]42]55]e5]75] i[2]

kL
. [12]is]33ssTazas T [] x[35]

How to Merge -

hav

% ‘12‘33‘35‘45‘
(%) 1 2 3

3t
y [15[42[55]65]75]
(%] 1 2 3 4

bo
ocesse

. |12]|15]33|35[42[45]

%) 1 2 3 4 5

How to Merge as long as y has

unprocessed elements

Jil copy y[j] to z
x [12[33[35(45] i[4]
b
y |15]42]55]65]75] il 2

K
. [12]1s]33]35]42]asss] [| x| ¢]

How to Merge as long as y has

unprocessed elements

Jil
% ‘12‘33‘35‘45‘ i
Bl
y |15]42]55]65]75] il 3

KL
. [12]1s]33]35]42]asss] [| x| 7]

How to Merge as long as y has

unprocessed elements

Jil copy y[j] to z
x [12[33[35(45] i[4]
b
y |15]42]55]65]75] il 3

kL
. [12]15]33]35 424555 65 | [7]

How to Merge as long as y has

unprocessed elements

4l
% ‘12‘33‘35‘45‘ i

Bl
y |15]42]55]65]75] il 4

K
. [12]15]33]35 42455 65 | x| 8]

How to Merge as long as y has

unprocessed elements

copy y[Jj] to z

4l
% ‘12‘33‘35‘45‘ i

Bl
y |15]42]55]65]75] il 4

o
. [12]15]33]35]42]45]55]65[75] x| 8]

How to Merge S

u Sssed e

4L
x ‘12‘33‘35‘45‘ i

(% 1 2 3
)
y |15]42[55[65(75] il5

0 1 2 3 4
Jkl
. [12]15]33]35]42 4555 65[75] x| 2]
0 1 2 3 4 5 6 7 8

(1/3)

def merge(x, y, z):
Given: sorted lists x and y
list z, has the combined length of x and y...
nx = len(x); ny = len(y)

i=0; J=20; k=0;
while i<nx and j<ny:

Deal with remaining values in x or vy

(2/3)

def merge(x, y, z):
Given: sorted lists x and y
list z, has the combined length of x and y...
nx = len(x); ny = len(y)

1 =0; j=20; k =20;
while i<nx and j<ny:
it x[1] <= yl[J]:
z[k]= x[i]; 1i=i+1
else:
z[k]=y[J]; J=]+1
k=k+1
Deal with remaining values in x or vy

(3/3)

def merge(x, y, z):
Given: sorted lists x and y
list z, has the combined length of x and y...
nx = len(x); ny = len(y)

1 =0; j=20; k =0;
while i<nx and j<ny:
it x[1] <= yl[J]:
z[k]= x[i]; 1i=i+1
else:
z[k]= y[Jl; J=3+1
k=k+1
Deal with remaining values in x or vy
while i<nx: # copy any remalining Xx-values
z[k]= x[1]; 1=i+1; k=k+1

while j<ny: # copy any remalining y-values
z[k]= y[Jl; 3J=3+1; k=k+1

def mergeSort(1li):
"""Sort list 1i using Merge Sort"""

if len(li) > 1:
Divide into two parts
mid= len(1li)/2
left= 1li[:mid]
right= li[mid:]

Recursive calls
mergeSort(left)
mergeSort(right)

Merge left & right back to 1li
merge(left, right, 1i)

41

Sorting Algorithms

e Sorting data is a common task

= |nsertion sort: on the order of n?
e input doubles? = work quadruples! (yikes)

e Today's topic:

= Merge sort: did we do better than Insertion Sort?

work = one comparison

How many comparisons do we make?

42

Merge sort:
~log,(n) “levels” X~ n comparisons each level

ENEEENEEEEEEEEER
LIy L rrrrTl

ety tifify Lhrtl

[[O M
FE FEEE EE BEEE

Sorting Algorithms

e Sorting data is a common task

= |nsertion sort: on the order of n?
e input doubles? = work quadruples! (yikes)

Order of
magnitude

" Merge sort: on the order of n-log,(n) difference

Should we always use merge sort then?

Python's sort actually combines merge and insertion sort!

For fun, check out the visualizations:
https://www.youtube.com/watch?v=xxcpvCGrCBc 14

https://www.youtube.com/watch?v=ZRPoEKHXTJg

https://www.youtube.com/watch?v=xxcpvCGrCBc
https://www.youtube.com/watch?v=ZRPoEKHXTJg

