Lecture 23: More Algorithms for Sorting

CS 1110

Introduction to Computing Using Python

Announcements

Next Tuesday:

- Lecture is a review session.
- There will be no post-lecture office hours.

Course Staff also hosting additional review sessions (possibly during study days). Announcements forthcoming.

Search Algorithms

Recall from last lecture:

- Searching for data is a common task
 - Linear search: on the order of n
 - input doubles? → work doubles!
 - Binary search: on the order of log2 n
 - input doubles? → work increases by just 1 unit!
 - BUT data needs to be sorted...
- Sorting data now suddenly interesting...

Sorting Algorithms

- Sorting data is a common task
 - Insertion sort: on the order of n²
 - input doubles? → work quadruples! (yikes)
- Today's topic:
 - Merge sort: can we do better than Insertion Sort?

Which algorithm does Python's sort use?

- Recursive algorithm that runs much faster than insertion sort for the same size list (when the size is big)!
- A variant of an algorithm called "merge sort"
- Based on the idea that sorting is hard, but "merging" two already sorted lists is easy.

Merge sort: Motivation

Since merging is easier than sorting, if I had two helpers, I'd...

- Give each helper half the array to sort
- Then I get back their sorted subarrays and merge them.

What if those two helpers each had two sub-helpers?

And the sub-helpers each had two sub-sub-helpers? And...

Subdivide the sorting task

Subdivide again

And again

And one last time

Now merge

And merge again

And again

And one last time

Done!


```
def mergeSort(li):
    """Sort list li using Merge Sort"""
    if len(li) > 1:
        # Divide into two parts
        mid = len(li)//2
        left= li[:mid]
        right= li[mid:]
        # Recursive calls
        mergeSort(left)
        mergeSort(right)
        # Merge left & right back to li
        555
    # base case does nothing!
   # a list with len 0 or 1 is sorted!
```

The central sub-problem is the **merging** of two sorted lists into one single sorted list

Approach:

keep comparing the smallest element of first list with smallest element of second list.

How to Merge as long as y has unprocessed elements 35 X 3 1 1


```
def merge(x, y, z):
    # Given: sorted lists x and y
    # list z, has the combined length of x and y...
    nx = len(x); ny = len(y)
    i = 0; j = 0; k = 0;
    while i<nx and j<ny:</pre>
```

Deal with remaining values in x or y

```
(2/3)
def merge(x, y, z):
     # Given: sorted lists x and y
     \# list z, has the combined length of x and y...
     nx = len(x); ny = len(y)
     i = 0; j = 0; k = 0;
     while i<nx and j<ny:</pre>
         if x[i] \leftarrow y[j]:
              z[k] = x[i]; i=i+1
         else:
              z[k] = y[j]; j=j+1
         k=k+1
     # Deal with remaining values in x or y
```

```
(3/3)
def merge(x, y, z):
     # Given: sorted lists x and y
     \# list z, has the combined length of x and y...
     nx = len(x); ny = len(y)
     i = 0; j = 0; k = 0;
     while i<nx and j<ny:</pre>
         if x[i] \leftarrow y[j]:
             z[k] = x[i]; i=i+1
         else:
             z[k] = y[j]; j=j+1
         k=k+1
     # Deal with remaining values in x or y
     while i<nx: # copy any remaining x-values
         z[k] = x[i]; i=i+1; k=k+1
     while j<ny: # copy any remaining y-values</pre>
         z[k] = y[j]; j=j+1; k=k+1
```

```
def mergeSort(li):
    """Sort list li using Merge Sort"""
    if len(li) > 1:
        # Divide into two parts
        mid = len(li)/2
        left= li[:mid]
        right= li[mid:]
        # Recursive calls
        mergeSort(left)
        mergeSort(right)
        # Merge left & right back to li
        merge(left, right, li)
```

Sorting Algorithms

- Sorting data is a common task
 - Insertion sort: on the order of n²
 - input doubles? → work quadruples! (yikes)
- Today's topic:
 - Merge sort: did we do better than Insertion Sort?

work = one comparison

How many comparisons do we make?

Merge sort:

Sorting Algorithms

- Sorting data is a common task
 - Insertion sort: on the order of n²
 - input doubles? → work quadruples! (yikes)

• Merge sort: on the order of $n \cdot \log_2(n)$

Order of magnitude difference

Should we always use merge sort then?

Python's **sort** actually combines merge and insertion sort!

For fun, check out the visualizations:

https://www.youtube.com/watch?v=xxcpvCGrCBc