http //www cs cornell

TN AN SRS

Lecture 23:
More Algorithms for Sorting

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Search Algorithms

Announcements

Next Tuesday:
= Lecture is a review session.
= There will be no post-lecture office hours.

Course Staff also hosting additional review
sessions (possibly during study days).
Announcements forthcoming.

Sorting Algorithms

Recall from last lecture:
e Searching for data is a common task
= Linear search: on the order of n
e input doubles? - work doubles!
= Binary search: on the order of log2 n
e input doubles? - work increases by just 1 unit!
e BUT data needs to be sorted...

e Sorting data now suddenly interesting...

Which algorithm does Python’s sort use?

e Sorting data is a common task
= |nsertion sort: on the order of n?
e input doubles? > work quadruples! (yikes)

e Today's topic:
= Merge sort: can we do better than Insertion Sort?

Merge sort: Motivation

e Recursive algorithm that runs much faster than
insertion sort for the same size list (when the size is big)!

e Avariant of an algorithm called “merge sort”

e Based on the idea that sorting is hard, but “merging”
two already sorted lists is easy.

L|11|17|19| R|14|15|16|18|

L|11|14|15|16|17|18|£|

Since merging is easier than sorting, if |
had two helpers, I'd...

¢ Give each helper half the array to sort

e Then | get back their sorted subarrays
and merge them.

Q What if those two helpers
O each had two sub-helpers?

o And the sub-helpers each had
two sub-sub-helpers? And...

Subdivide the sorting task

[e]efu]clexfafolr|u]efn]r]c]s]n]

[efzufc]efx]afo| [rlufe]o[r]c]s]n]

And again

Subdivide again

[e]efu]c] [e]x[afo| [rfzfe]n] [r]cfo]]

[ele] [w]c] [2]x] [afe] [e]z] [e]o] [rfc] [s]x]

Now merge

[efeufc]efx]afo| [rlufe]o[r]c]s]n]

[e]efu]c] [2]x[afo| [rfzfe]o] [r]cfo]]

And one last time

[ele] [c]w][e]x]| [afo] [efr][o]e] [c]r] [s]~]
[E]=] Dedle]l=]lx] [21fe] =] =] [R][e] [oTn}.

[ele] [w]c] [2]x] [afe] [e]z] [e]o] [rfc] [s]x]
[EIE] Pedle] =] [2fe] EE] EE] Ele] []

And merge again

[elcfu]u] [afe]xfo] [ofe]r]e] [c]ofn]z]

[ele] [e]w][e]x]| [afo] [efr][o]e] [c]r] [s]~]

And again

[2fe]efc]u]x]ulof [clo]|r[s]u|n]e]r]

[elcfu]u] [afe]xfo] [ofe]r]e] [c]ofn]z]

Done!

[2[efc]o]efrfc]a]s]x]ufu]n]e]o]=]

The central sub-problem is the merging of two
sorted lists into one single sorted list

|12|33|35|45| Approach:
keep comparing the
smallest element of first
list with smallest

element of second list.

|15|42|55|65|75|

|12|15|33|35|42|45|55|65|75|

And one last time

[[efc]o]efrfc]a]s]x]u]u]n]e]o =]

[2fe]efc]u]x]ulo| [clo]r[s]u|n]e]r]

def mergeSort(li):
"""Sort list 1i using Merge Sort

if len(1li) > 1:
Divide into two parts
mid= len(1i)//2
left= 1i[:mid]
right= li[mid:]

Recursive calls
mergeSort(left)
mergeSort(right)
Merge left & right back to 1li
???

base case does nothing!

a list with len © or 1 is sorted!

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3j] ?
X |12|33|35|45|

> —— < Yes! i’[:::]
B
v [15]42]55]65]75] i[]

23 N s N

How to Merge as long as both x and y

have unprocessed elements

x[1] <= y[]] ?
x | {f |3f |is| iSl Ves! 5

copy x[i] to z

&b
v [15]42]55]65]75] i[]

2] 1 2 3 4

K
L TTTTTTTY <[]

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

ol i[1]
copy y[j] to z

&b
v [15]42]55]65]75] i[]

2] 1 2 3 4

K
T T T «[e]

0 1 2 3 4 5 6 7 8

% |12|33|35|45|
(%] 1 2 3

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

il 1
Yes! lIIII
copy x[i] to z

b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

B
cesEIT T <2

0 1 2 3 4 5 6 7 8

% |12|33|35|45|
(] 1 2 3

How to Merge as long as both x and y

have unprocessed elements

[i] <= y[]j] ?
x |12|33|35|45| e

> — < No! iIIII
B
v [15]42]55]65]75] i[]

2] 1 2 3 4

K
L TTTTTTTT o[

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

Yes! lI’IIII
b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

K
eI TTTTTT] <[]

0 1 2 3 4 5 6 7 8

x |12|33|35|45|
(%] 1 2 3

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

Yes! lI’IIII
b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

K
o 53 53 EET I I I I I S

0 1 2 3 4 5 6 7 8

X |12|33|35|45|
(%] 1 2 3

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

il 2
Yes! lIIII
copy x[i] to z

b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

% |12|33|35|45|
(] 1 2 3

B
) 53) EE1 EE1 I I I I I S

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

No! iIIII

copy y[j] to z

b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

% |12|33|35|45|
(%] 1 2 3

K
) 53) EE1 1 21 I I I I s

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

Yes! lIIII
copy x[i] to z

b
v [15]42]55[e5]75] i[2]

2] 1 2 3 4

% |12|33|35|45|
(] 1 2 3

i
. [2[s]ss s a2[as T] «[5]

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

[i] <= y[]j] ?
x|12|33|35|45| e

No! iIIII
0 1 2 3
b
v [15]42]55]65]75] i[T]

2] 1 2 3 4

K
) 53) EE1 EE1 I I I I s

0 1 2 3 4 5 6 7 8

How to Merge as long as both x and y

have unprocessed elements

x[i] <= y[3] ?

Yes! iIIII
b
v [15]42]55[e5]75] i[2]

2] 1 2 3 4

X |12|33|35|45|
(%] 1 2 3

K
) 53) EE1 1 22 I I I I S

0 1 2 3 4 5 6 7 8

How to Merge 3 bo y

hav ocesse ts

il
« [12]33]35]45] i[4]

0 1 2 3

b
v [15]42]55[e5]75] i[2]

2] 1 2 3 4

Jd
. [12[s]s3 s a2[as T] «[¢]

0 1 2 3 4 5 6 7 8

How to Merge as long as y has

unprocessed elements

copy y[j] to z
:[]
S [

% |12|33|35|45|
(] 1 2 3

v [15]42]55[e5]75]
2] 1 2 3 4

(<]

” |12|15|33|35|42|45|55| | |
] 1 2 3 4 5 6 7 8

-

How to Merge as long as y has

unprocessed elements

copy y[j] to z
:[]
S 5

% |12|33|35|45|
(%] 1 2 3

y [15]42]55(65 [75]
2] 1 2 3 4

” |12|15|33|35|42|45|55|65| |
] 1 2 3 4 5 6 7 8

-

How to Merge as long as y has

unprocessed elements

copy y[j] to z
:[]
S [

% |12|33|35|45|
(] 1 2 3

y |15]42]55[65] 75|
2] 1 2 3 4

” |12|15|33|35|42|45|55|65|75|
] 1 2 3 4 5 6 7 8

-

How to Merge as long as y has

unprocessed elements

% |12|33|35|45|
(%] 1 2 3

y [15]42]55(65 [75]
2] 1 2 3 4

” |12|15|33|35|42|45|55| | |
] 1 2 3 4 5 6 7 8

How to Merge as long as y has

unprocessed elements

X |12|33|35|45|
(%] 1 2 3

y |15]42]55[65] 75|
%] 1 2 3 4

” |12|15|33|35|42|45|55|65| |
] 1 2 3 4 5 6 7 8

How to Merge as

u Ssed e

X |12|33|35|45|
(%] 1 2 3

v |15]42]55[6s5]75]
2] 1 2 3 4

” |12|15|33|35|42|45|55|65|75|
] 1 2 3 4 5 6 7 8

@
=

«[7]

@
Jun

«[e]

@
=

K
«[o]

(1/3) (2/3)

def merge(x, y, z): def merge(x, y, z):
Given: sorted lists x and y # Given: sorted lists x and y
list z, has the combined length of x and y... # list z, has the combined length of x and y...
nx = len(x); ny = len(y) nx = len(x); ny = len(y)
i=90; j=20;, k=20; i=9; j=20; k=20;
while i<nx and j<ny: while i<nx and j<ny:

if x[i] <= y[]j]:
z[k]= x[1]; i=i+1

else:
z[k]= y[3]; 3j=j+1
k=k+1
Deal with remaining values in x or y # Deal with remaining values in x or vy

(3/3) .
def merge(x, y, 2): def r'rllfe“rl'geSor'tgll).. .
Given: sorted lists x and y Sort list 1i using Merge Sort
list z, has the combined length of x and y... if len(li) > 1:
nx = len(x); ny = len(y) # Divide into two parts
i=0; j=0; k =0; mid= len(li)/2
while i<nx and j<ny: left= 1i[:mid]
if x[i] <= y[]]: coht= 1iTmid-
2[K]= x[i]: =il right= 1i[mid:]
else: # Recursive calls
- z[k]= y[j]; J=j+1 mergeSort(left)
=k+1 :
Deal with remaining values in x or vy mergesort(right)
while i<nx: # copy any remaining x-values # Merge left & right back to 1i
z[k]= x[i]; i=i+1; k=k+1 merge(left, right, 1i)
while j<ny: # copy any remaining y-values
z[k]= y[31; J=3+1; k=k+1 Y
Merge sort:

Sorting Algorithms ~log,(n) “levels” X ~ n comparisons each level

e Sorting data is a common task | | I I I I | I I I | I I I | I |

= |nsertion sort: on the order of n?
e input doubles? > work quadruples! (yikes) | I I I | I I I | | I I I | I I I |

e Today's topic: LTIy ety thrt

= Merge sort: did we do better than Insertion Sort?

HEgEREER RN EEpENEE
work = one comparison 2 » 2 2 s 2 o 2
How many comparisons do we make? Izl IE"E'
43

42

Sorting Algorithms

e Sorting data is a common task
= |nsertion sort: on the order of n?
e input doubles? > work quadruples! (yikes)
Order of

magnitude

= Merge sort: on the order of n-log,(n) difference

Should we always use merge sort then?
Python's sort actually combines merge and insertion sort!

For fun, check out the visualizations:
https://www.youtube.com/watch?v=xxcpvCGrCBc "

https://www.youtube.com/watch?v=ZRPoEKHXTJg

