Lecture 15:

Classes
(Chapters 15 & 17.1-17.5)

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Announcements

Prelim 2 alternate time request form live Fri 3/25

More 1-on-1's today thru Sunday.
= Come one, come all! (Sign up on CMS.)

A5 due date moved later to Sun 4/17.

= The tradeoff: more time to work on A5, less "pressure" on
Spring break, BUT less time to look at the A5 solutions before
Prelim 2 (Tu 4/19) and temptation to delay prelim studying.
(Resist that temptation.)

next week's lab 16 extended to Wed 4/13 due to
spring break
These updates are on the Schedule webpage.

Classes are user-defined Types

Defining new classes =
adding new types to
Python

Example Classes
e Point3

class name e Rect

Freq (A3), for word
frequencies

Doll (class, lab)
Song, Mix (A4)

x
°

e Call Frame on slide 10 is new. Check it out!

e Slide 27 had a typo! Needed to create the Course
before we could enroll in it

* The lecture stopped at slide 29 but slides 30-37
are also worth taking a peek at (including a Q&A)

Recall: Objects as Data in Folders

unique
e attributes: variables identifier
within objects Heap Space
e Type shown in the type
corner Global Space id1 i
nums | idl
o| 2
A7
nums = [2,3,5] 2| 5
nums[1]

Simple Class Definition

class <class-name>:

Class specification

Just like function
definitions, but placed

inside a class definition,
i.e., indented relative to
the class header

<method definitions>

The Class Specification

class Course: Short Summary

"""An instance is a Cornell course

Attribute list
Instance Attributes: /

name: [str] name of the course of form: <DEPT NUM>
[int] number of credits, must be > @

™

Description and invariant*

n_credit:
\ Attribute name

*more about this
later in this lecture

| Convention: capitalize first letter of class name

Constructor (2)

Global Space

il |
ol

= Makes a new object (folder) on the Heap

e Function to create new instances

= function name is the class name
¢ Calling the constructor:

= Callsthe _init__ method _init__ id1

. populates
= Returns the id of the folder / the folders! T

Course

two underscores id2
cl = Course("CS 1110", 4)
c2 = Course("MATH 1920", 3) 0
Evaluating a Constructor Expression
1. Constructor creates a new object (folder) Global Space

of the class Course on the Heap -
= Folder is initially empty C1
= Hasid
2. Constructorcalls__init__ (self, "CS 1110", 4)
= self =identifier ("Fill this folder!")
= QOther args come from the constructor call
= commandsin_init__ populate folder id1
= __init__ hasno returnvalue! ("Ifilled it!")

name
n_credit

11

3. Constructor returns the id
4. LHS variable created, id is value in the box

cl = Course("Cs 1110", 4) |

Constructor (1)

Global Space

cal i |
ol

= Makes a new object (folder) on the Heap

e Function to create new instances

= function name is the class name

¢ Calling the constructor:

= Returns the id of the folder
But how do we populate the folders? /id;
\
cl = Course("CS 1110", 4)
c2 = Course("MATH 1920", 3) .
Special Method: __init
def __init_ (self, name, n_credit): ‘_init_ ‘ ‘(Iine#s)
"""Initializer: creates a Course
name: [str] name of the course self
n_credit: [int] num credits, must be > © name
n_credit

self.name = name

self.n_credit = n_credit return NOne—‘

Param self: id of
instance being idl
initialized. Used to
assign attributes

name
n_credit |I|

10

cl = Course('CS 1110', 4)

this is the call to the constructor, which calls _ init__

Truths about Object Instantiation

1) Instantiate an object by calling the constructor
2) The constructor creates the folder

3) A constructor callsthe __init__ method

4) __init__ puts attributes in the folder

5) The constructor returns the id of the folder

12

Invariants

e Properties of an attribute that must be true

Works like a precondition:
= If invariant satisfied, object works properly

= |f not satisfied, object is “corrupted”

Example:

= Course class: attribute name must be a string

Purpose of the class specification

13

We know how to make:

Class definitions

Class specifications

The init method
Attributes (using self)

Let's make another class!

15

Making Arguments Optional

e Can assign default valuesto __init_ arguments
= Write as assignments to parameters in definition
= Parameters with default values are optional

Examples:

sl = Student(“xyl1234”, [], "History") # arguments 1,2,3
s2 = Student(“xy1234”, course_list) # arguments 1 & 2
s3 = Student(“xy1234”, major="Art") # arguments 1 & 3

class Student:
def __init__ (self, netID, courses=[], major=None):
self.netID = netID

self.courses = courses default values when

self.major = major not specified
< the rest of initializer goes here > 17

Checking Invariants with an Assert

class Course:

nun wun

Instance is a Cornell course

def __init__ (self, name, n_credit):
"""Initializer: instance with name, n_credit courses
name: [str] name of the course of form: <DEPT NUM>

n_credit: [int] num credits, must be > ©

assert type(name) == str, "name should be type str"

assert name[@].isalpha(), " name should begin with a letter"
assert name[-1].isdigit(), " name should end with an int"
assert type(n_credit) == int, "n_credit should be type int"
assert n_credit > @, "n_credit should be > 0"

self.name = name

self.n_credit = n_credit 1

Student Class Specification, v1

class Student:
"""An instance is a Cornell student

Instance Attributes:

netID: student netID [str], 2-3 letters + 1-4 digits
courses: list of courses

major: declared major [str]

n_credit: [int] num credits this semester

nun

16

Student Class Specification, v2

class Student:
"""An instance is a Cornell student

Instance Attributes:

netID: student netID [str], 2-3 letters + 1-4 digits
courses: list of courses

major: declared major [str]

n_credit: [int] num credits this semester

max_credit: [int] max num credits ‘5-~
W New attribute!

What do you think about this?

19

A look at three v2 Student instances

Anything wrong with this?

id5 id6 id7
netID netIDdef456’
courses m courses m
major major"
n_credit n_credit
max_credit max_credit

netID
courses
major
n_credit
max_credit

(9]

20

v3: Class Attributes — assign in class definition

class Student:
"""Instance is a Cornell student
max_credit = 20
def __init_ (self, netID, courses, major):
< specs go here >
< assertions go here >
self.netID = netID
self.courses = courses

Where does
max_credit
live in memory?
self.major = major
self.n_credit = @
for ¢ in courses: # add up all the credits
self.n_credit = self.n_credit + c.n_credit
assert self.n_credit <= Student.max_credit, "over credits!"

Refer to class attribute using class name 2

Functions vs Object Methods

Function: call with object as argument
function name / function argument

len(my_list)
print(my_list)

Method: function tied to the object

object variable method name

\
my_list.count(7)
my_list.sort()

24

Class Attributes

Class Attributes: Variables that belong to the Class
¢ One variable for the whole Class
e Shared by all object instances

e Accessby <Class Name>.<attribute-name>

Why?

e Some variables are relevant to every object instance of a class
¢ Does not make sense to make them object attributes

¢ Doesn’t make sense to make them global variables, either

Example: we want all students to have the same credit limit
(Alsoin A4: all_of_em in both Song and Mix)

21

Classes Have Folders Too

Object Folders Class Folders
* Separate for each instance e Data common to all

e Example: 2 Student objects instances

05 | 143
courses

major

e

courses
wador

S

1
s2

¢ Not just data!

e Everything common to
all instances goes here!

Object Methods

e Attributes live in object folder
e Class Attributes live in class folder
e Methods live in class folder

1d5

netID| abc123"
courses| id2

najor
n_credit

25

Complete Class Definition

Another Method Definition

class <class-name>:

Class specification

cl = Course("AEM 2400", 4)
sl.enroll(cl)

<assignment statements>

<method definitions>

™~ Look like function definitions: \

¢ Butindented inside class
e 1%t parameter always self

the Class folder
class Student(): after reading
"""Specification goes here.""” the class
max_credit = 20 definition
def __init_ (self, netID, courses, major):
. <snip>

26

More Method Definitions!

Python creates

class Student:

def __init__ (self, netID, courses=[], major=None):
< init fn definition goes here >

def enroll(self, name, n):
< enroll fn definition goes here >

def drop(self, course_name):
"""removes course with name course_name from courses list

updates n_credit accordingly

course_name: name of course to drop [str] """
for one_course in self.courses:
if one_course.name == course_name:
self.n_credit = self.n_credit - one_course.n_credit
self.courses.remove(one_course)
print("just dropped "+course_name)

print("currently at"+str(self.n_credit)+" credits")
28

Rules to live by (1/1)

1. Refer to Class Attributes using the Class Name
sl = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

31

= enroll isdefined in Student class folder
= enroll iscalled with s1 asiits first argument
= enroll knows which instance of Student it is working with

class Student():

def __init__ (self, netID, courses=[], major=None):
< init fn definition goes here >
def enroll(self, new_course):
if self.n_credit + new_course.n|/credit > Student.max_credit:
print("Sorry your schedule is full!")
else:
self.courses.append(new_course)
self.n_credit = self.n_credit + new_course.n_credit 27
print("Welcome to "+ new_course.name)

We now know how to make:

Class definitions

Class specifications

The init function
Attributes (using self)
Class attributes

Class methods

29

Name Resolution for Objects

e myobject.myattribute means ids
IHIIHHIII
= Go the folder for myobject si1 PEVE
netID| Xy

= Find method myattribute courses| id2

najor
n_credit

(Same thing applies to myobject .mymethod ()) l

= |f missing, check class folder

= |f not in either, raise error

sl = Student("xy1234", [], "History")

finds attribute in object folder
print(sl.netID)
finds attribute in class folder

32

print(sil.max_credit) < dangerous

Accessing vs. Modifying Class Variables

¢ Recall: you cannot assign to a global variable
from inside a function call

e Similarly: you cannot assign to a class attribute
from “inside” an object variable

sl = Student(“xy1234”, [], "History")

Student.max_credit = 23 # updates class attribute

sl.max_credit = 24

called max_credit

Better to refer to Class Variables \
Just like it did in the

creates new object attribute

What gets Printed? (Q)

import college Y 5
sl = college.Student(“jl200", [], "Art") 20 20
print(sl.max_credit) 20 20
s2 = college.Student(“jl202", [], "History") |73 23
int(s2.max i
z;?;aiicregizc:eg;t) 23 23
print(sl.max_credit) 23] [20]
print(s2.max_credit) — —
print(college.Student.max_credit) C: D:
20 20
20 20
20 20
23 23
20 23

34

using the Class Name

What gets Printed? (A)

__init_method! 33

import college

A: B:
sl = college.Student(“jl200", [], "Art") 20 20
print(sl.max_credit) 20 20
s2 = college.Student(“jl202", [], "History") 23 23
print(s2.max_credit)
s2.max_credit = 23 23 23
print(sl.max_credit) 23 20
print(s2.max_credit)
print(college.Student.max_credit) C: D:
20 20
20 20
20 20
23 23
20 23
. - 35
CORRECT

Don’t forget self, Part 1

def enroll(self, new_course): # if you forget self entirely

if self.n_credit + n > Student.max_credit:
print("Sorry your schedule is full!")
else:
self.courses.append(new_course)

self.n_credit = self.n_credit + new_course.n_credit

print("Welcome to "+ new_course.name)

sl = Student(“xy1234”, [], "History")
c5 = Course("AEM 2400", 4)

sl.enroll(c5) <______________
always passes s1 as first argument!

TypeError: enroll() takes 1 positional

arguments but 2 were given

37

Rules to live by (2/2)

1. Refer to Class Attributes using the Class Name
sl = Student("xy1234", [], "History")

print("max credits = " + str(Student.max_credit))

2. Don'’t forget self
= in parameter list of method (method header)
= when defining method (method body)

36

Don’t forget self, Part 2

def enroll(self, new_course): # if you forget self in the body
if self.n_credit + n > Student.max_credit:
print("Sorry your schedule is full!")
else:
self.courses.append(new_course)
self.n_credit = self.n_credit + new_course.n_credit
print("Welcome to "+ new_course.name)

sl = Student(“xy1234”, [], "History")
c5 = Course("AEM 2400", 4)
sl.enroll(ch)

NameError: global name
‘n_credit' is not defined

38

