g

" \ 3 > | v._’." _ | & j‘/
UM http://www.cs.cornell.edu/courses/cs1110/2022sp

S A\ ’ ‘ P\ ’ ISR ’

Lecture 9:
Memory in Python

CS 1110
Introduction to Computing Using Python

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

http://www.cs.cornell.edu/courses/cs1110/2022sp

Announcements

Last day to inform us of your Prelim 1 conflict!
Previous Exams located on the website

Al revision process: Al closed now on CMS for grading.
Set your CMS notifications to “receive email when ...”
When feedback is released, expected on late Thursday,
Feb 24 afternoon, read resubmission instructions

A2 to be released today

Global Space

Global Space Global Space
" What you “start with”
= Stores global variables X 4

= Lasts until you quit Python

I
D

X

Enter Heap Space

Global Space

. Global Space
" What you “start with”
= Stores global variables x| 4 d1 Point2
= Lasts until you quit Python Dl id1 « [1
q| id2 y | 2
* Where “folders” are stored
= Have to access indirectly id2
Point2
Xx=4
p = shape.Point2(1,2) x |10
q = shape.Point2(10,7) y | 7

p & q live in Global Space. Their folders live on the Heap.

Calling a Function Creates a Call Frame (1)

What’s in a Call Frame?

Global Space
* Boxes for parameters at the
. idl
start of the fgnctlon X| 4 Point2
e Boxes for variables local to :
Pl idl « |1
the function as they are
created y [2
Call Stack
Jef adjust_x(pt, n): :
adjust_x 1
1 pt.x=pt.x+n
idl |pt
x=4 '
p = shape.Point2(1,2) 4 In
adjust_x(p, x)

Calling a Function Creates a Call Frame (2)

What’s in a Call Frame?

* Boxes for parameters at the
start of the function

* Boxes for variables local to
the function as they are
created

def adjust_x(pt, n):

‘)t.x =pt.x+n

Xx=4
p = shape.Point2(1,2)
adjust_x(p, x)

Global Space

X

4

P

idl

Call Stack

idl

Point2

A5

adjust_x

d1

A

N

pt

RETURN

None

Calling a Function Creates a Call Frame (3)

What’s in a Call Frame?

* Boxes for parameters at the
start of the function

* Boxes for variables local to
the function as they are
created

def adjust_x(pt, n):
1 pt.x=pt.x+n

Xx=4
p = shape.Point2(1,2)
#djust_x(p, X)

idl |pt

4 N

RETURN

Global Space
X 4 dt Point2
Pl idl x |45
y |2
Call Stack
adjust_x }//

Putting it all together

* Global Space
= What you “start with”
= Stores global variables Global Space
= Lasts until you quit Python o [1a2 id2

* Where “folders” are stored
= Have to access indirectly Call Stack

e Call Frames [1
= Parameters §

= Other variables local to function % f2
Q

= [asts until function returns

Two Points Make a Line

— —

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
print("Where does the line start?")

X = input("x: ")

start.x = int(x)

y = input("y: ")

) start.y = int(y)

print("The line starts at ("+x+ ","+y+ ").")
print("Where does the line stop?")

X = input("x: ")

stop.x = int(x)

y = input("y: ")

stop.y = int(y)

print("The line stops at ("+x+ ","+y+ ").")

Where does the line start?
x: 1

y: 2

The line starts at (1,2).

Where does the line stop?
X: 4

y: 6

The line stops at (4,6).

A

Redundant Code is BAAAAD!

o — —

start = shape.Point2(0,0)
stop = shape.Point2(0,0)

print("Where does the line start?")

X = input("x: ")

start.x = int(x)

y = input("y: ")

start.y = int(y)

print("The line starts at ("+x+ ", "+y+ ").")

print("Where does the line stop?")

X = input("x: ")

stop.x = int(x)

y = input("y: ")

stop.y = int(y)

print("The line stops at ("+x+ ","+y+ ").")

12

Let’s make a function!

pt is the point object to be initialized

end type is "start" or "stop"

def configure(pt, end):
print("Where does the line
X = input("x: ")
pt.x = int(x)
y = input("y: ")
pt.y = int(y)
print("The line

+ end + "?

+end+ "s at ("+x+ ",

)

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
configure(start, "start")
configure(stop, "stop")

+y+ II).II

L - S

13

Still a bit of redundancy

pt is the point object to be initialized
end type is "start" or "stop"
def configure(pt, end):
print("Where does the line
X = input("x: ")
| pt.x = int(x)

y = input("y: ")
pt.y = int(y)
print(The line " +end+ "s at ("+x+ ","+y+ ")."

+ end + "?"

)

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
configure(start, "start")
configure(stop, "stop")

L — —— —

Yay, Helper Functions!

— e

def get coord(name):
X = input(name+": ")
return int(x)

def configure(pt, end):
print("Where does the line
pt.x = get _coord("x")
pt.y = get _coord("y")
print("The line "

"))

)

+ end + "?"

+end+ "s at ("+str(pt.x)+ ","+str(pt.y)+

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
configure(start, "start")
configure(stop, "stop")

15

Frames and Helper Functions

 Functions can call each other!
* Each call creates a new call frame

* Writing the same several lines of code in 2 places? Or
code that accomplishes some conceptual sub-task? Or
your function is getting too long? Write a helper
function! Makes your code easier to

" read

" write
= edit

" debug

16

1
2

3

4
5

6

Drawing Frames for Helper Functions (1)

def get coord(name):
c = input(name+": ")
return int(c)

def configure(pt, end):

pt.y = get _coord("y")

Global Space

Point2

start| idl id1
Call Stack

configure ,314 x | O
idl | pt y |0
“start” | end

Wr‘int("Wher‘e does the line " + end +
pt.x = get coord("x")

pm)

print("The line " +end+ "s at ("+str(pt.x)+ "

start = shape.Point2(0,0)
configure(start, "start")

,"Hstr(pt.y)+

"y

17

)

Q1: what do you do next?

Global Space
start] id1 id1
Call Stack Point2
configure 'X 4 X 0
def get_coord(name): . 7
1 c = input(name+": ") 'ql pt Y
y) return int(c) “start” | end

def configure(pt, end):]
gure (p) A: Cross out the configure call frame.

3 rint("Where does the 1lin
4‘;,(.)(- get coord("x") B: Create a get_coord call frame.
5 ot.y = get coord("y") C: Cross out the 4 in the call frame.
6 print("The line " +end+ 1D: A& B
E:B&C

start = shape.Point2(0,0)

18
configure(start, "start")

Drawing Frames for Helper Functions (2)

Global Space
A
B CORRECT 1 .
C Start |d1 |d1 P : 2
D
E Call Stack el
configure ,Z/ 4 x | O
ﬂget_coord(name) : . 0
1 c = input(name+": ") 'ql pt y
2 return int(c) “start” | end \iiiiii\
| \K
def confi £ end): Not done!
ef configure(pt, end): get_coord 1 Do ot
3 print("Where does the 1i
4 pt.x = get_coord("x") | | name cross out!!
5 pt.y = get _coord("y")
6 print("The line " +end+ " +str(pt.y)+ ").")

start = shape.Point2(0,0)

19
configure(start, "start")

Drawing Frames for Helper Functions (3)

Global Space
Assume user types start] id1
1 at Python shell

Call Stack

configure ,8’ 4

1 ' c ="input(name+": ") iél Pt
2 return int(c) “start” | end

def configure(pt, end): get_coord }/2

print("Where does the 1li

pt.x = get coord("x") et name

pt.y = get _coord("y")

O v b~ W

" C lllll

print("The line " +end+

start = shape.Point2(0,0)
configure(start, "start")

idl
Point2
x | O
y |0

+str(pt.y)+ ").")

20

Drawing Frames for Helper Functions (4)

Global Space

start| idl

Call Stack

configure

def get coord(name):
1 c = input(name+": ")

id1 pt

“start” | end

» return int(c)

def configure(pt, end):
print("Where does the 1li

get_coord

pt.x = get coord("x")

X name

pt.y = get _coord("y")

OO v b W

start = shape.Point2(0,0)
configure(start, "start")

print("The line " +end+ "

Yz

idl

Point2

c | "1"|RETURN | 1

str(pt.y)+

"y

)

1
2

3

4
5

6

Drawing Frames for Helper Functions (5)

To do: Finish the diagram,
assuming that user types 2

at Python shell prompt when
this get_coord call executes.

Global Space
start| idl

Call Stack

configure

def get coord(name):
c = input(name+": ")

id1 pt

return int(c)

“start” | end

def configure(pt, end):
print("Where does the 1li

P4

get_coord

t.x = get _coord("x")
‘;t .y = get _coord("y")

X name

print("The line " +end+

start = shape.Point2(0,0)
configure(start, "start")

i<

idl

Point2
X)(5 1
y |0

"| RETURN | 1

str(pt.y)+ ").")

C
P
7~

22

The Call Stack

e The set of function frames
drawn 1n call order

e Functions frames are “stacked”

= Cannot remove one above
w/0 removing one below
* Python must keep the entire
stack in memory

= Error if 1t cannot hold stack
(““stack overflow”)

functionl

function2

function3

function4

function5

23

Errors and the Call Stack

def get_coord(name):
9 = input(name+": ")
10 return int(x)

def configure(pt, end):

I3 print("Where does the line "

14 ypt.x = get_coord("x")
f! Ety get _coord("y")

16 print("The line " +end+ "s at ("+x+ ",

18 start = shape.Point2(0,0)
19 configure(start, "start")

Where does
X: 1

the line start?

Traceback (most recent call last):

File "v3.
configure(start,
File "v3.

pt.x =

File "v3.

return
NameError:

py", line 19, in <module>
"start")

py", line 14, in configure
get_coord("x")

py", line 10, in get coord
str(x)

name 'x' is not defined

+y+ ").")

24

Q2: what does the call stack look like at this
point in the execution of the code?

def f3():
print("f3")

def f2():
print("f2")
3()

=
3()
def f1():

print("f1")
2()

1()

A B C D E
f1 f1 f1 f1 f1
f2 f2 f2 f2

f3 f3 f3

f3 f3

f3

Choose 1 stack; in that stack
cross out any frames that
should have ended.

25

A2: what does the call stack look like at this
point in the execution of the code?

def f3(): B
print("f3")

fl

def f2():
print("f2") f2
3()

-, L
g

def f1(): -~
print("f1")
£20) Choose 1 stack; in that stack
cross out any frames that

£1() should have ended.

26

Modules and Global Space

Global Space
Import ,
| math |id5 1dS
e Creates a global variable math module
(same name as module) o | 3141502
* Puts variables, functions of e | 2718781
module 1n a folder
* Puts folder 1d in the global
variable

>>> import math

27

Modules vs Objects
Global Space

~
>>> import math

>>> math.pi

/

>>> p = shapes.Point3(5,2,3)
>>> p.X

\

/

math

idS

p

id3

idS

math module

pi | 3.141592

e | 2.718281

id3

Point3

Functions and Global Space

A function definition Global Space
e Creates a global variable INCH_PER_FT |12 id6
(same name as function) function

e Creates a folder for body get_feet [1d6

* Puts folder 1d in the global
variable

INCH PER_FT =12 Body

def get feet(ht_in_inches):
return ht_in_inches // INCH_PER_FT

29

Function Definition vs. Call Frame

Global Space

| INCHES_PER_FOOT = 12 N Globals Objects
& global id1:function
2 def get feet(ht in inches): get_feet(ht_in_inches)
iy INCHES_PER_FOOT 12

feet = ht_in_inches // INCHES PER_FOOT '

return feet get _feet |19l
7 f = get feet(68) Frames
5 print("You are at least "+str(f)+" feet talll")

get feet

i ht_in_inches 68

et|s | Heap Space

\' << First \ " <Back Step 6 of 7 \ Forward > \ \ Last >> 'i

line that has just executed

e | (Function
= next line to execute d efi n itio n
Call Frame

oes here
(memory for function call) 5)

It’s alive! %

Storage in Python

* Global Space
* What you “start with”
= Stores global variables, modules & functions

= Lasts until you quit Python Global Space
o p |id2 id2

" Where “folders” are stored
= Have to access indirectly

 Call Stack = |11
= Where Call Frames live =

= Parameters = ?
@

= Other variables local to function
= [asts until function returns

Don’t draw module folder, function folder

Folders that we do not require you to ¢

raw.

* Module folder 1s created upon import, for example,

import math

 Function folder 1s created with def (the function

header), for example,
def get_feet(height_in_in
Don’t draw those folders and the
store their 1ds; we only explained

ches):

variables that
those folders to

explain what you see in Python Tutor.

Do not draw them.

32

Q3: what does the call stack look like at this
point in the execution of the code?

def f3():
print("f3")

def f2():
print("f2")
£3()
3()
3()

def f1():
print("f1")

dZ()

1()

A B C D E
f1 f1 f1 f1 f1
f2 f2 f2 f2

f3 f3 f3

f3 f3

f3

Choose 1 stack; in that stack
cross out any frames that
should have ended.

A3: what does the call stack look like at this
point in the execution of the code?

def f3():
print("f3")

def f2():
print("f2")
3()

A
T
£3() /g/
d
B

£3() -~

def f1(): -~
print("f1")

20) ~ Choose 1 stack; in that stack
‘ cross out any frames that
£1() should have ended.

