i > SE VRN AN N LI

Y) http //www CcS. cor‘nell edu/courses/cs1110/2022sp
‘, S5

Announcements

Last day to inform us of your Prelim 1 conflict!
e Previous Exams located on the website

Lecture 9:
M emao ry | N Pyth on e Al revision process: Al closed now on CMS for grading.
Set your CMS notifications to “receive email when ...”
CS 1110 When feedback is released, expected on late Thursday,

) . . Feb 24 afternoon, read resubmission instructions
Introduction to Computing Using Python

A2 to be released today

[E. Andersen, A. Bracy, D. Gries, L. Lee, S. Marschner, C. Van Loan, W. White]

Global Space Enter Heap Space
Global Space Global Space Global Space Global Space
= What you “start with” = What you “start with” .
= Stores global variables X = Stores global variables X id1
= Lasts until you quit Python = Lasts until you quit Python P .
q -idz 2
= Where “folders” are stored Y
= Have to access indirectly id2
x=4 -m
p = shape.Point2(1,2) X
g = shape.Point2(10,7) y
x=4
p & q live in Global Space. Their folders live on the Heap.
Calling a Function Creates a Call Frame (1) Calling a Function Creates a Call Frame (2)
What’s in a Call Frame? Global Space What’s in a Call Frame? Global Space
* Boxes for parameters at the * Boxes for parameters at the

: id1 : idl
start of the function X - start of the function X -

* Boxes for variables local to * Boxes for variables local to p -
the function as they are the function as they are X

created y

created
od ot ad Call Stack
t t, n): t t, n):
efa ji,ls - xX(pt, n) efa ji,ls - xX(pt, n) 2diust_x ,1
1] ptx=ptx+n 1 Jt.x =ptx+n

x=4 x=4
p = shape.Point2(1,2) p = shape.Point2(1,2)
adjust_x(p, x) adjust_x(p, x) RETURNI| None

Calling a Function Creates a Call Frame (3)

What’s in a Call Frame?
* Boxes for parameters at the

start of the function X E

* Boxes for variables local to
the function as they are
created

Global Space

id1

pliat] 5]

y

Call Stack

def adjust_x(pt, n):
1 ptx=ptx+n

x=4
p = shape.Point2(1,2)
djust_x(p, x)

adjust_x

Y

RETURN]| None

Two Points Make a Line

Putting it all together

start = shape.Point2(0,0)

stop = shape.Point2(0,0)
print("Where does the line start?")
x = input("x: ")

start.x = int(x)

y = input("y: ")

)start.y = int(y)

print("The line starts at ("+x+
print("Where does the line stop?")
x = input("x: ")

stop.x = int(x)

y = input("y: ")

stop.y = int(y)

print("The line stops at ("+x+ ","+y+ "

"y 7))

Where does the line start?
x: 1

y: 2

The line starts at (1,2).

Where does the line stop?

X: 4

y: 6
The line stops at (4,6).

Let’s make a function!

pt is the point object to be initialized

end type is "start" or "stop"

def configure(pt, end):
print("Where does the line "
x = input("x: ")
pt.x = int(x)
y = input("y: ")
pt.y = int(y)
print("The line "

+ end +

)

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
configure(start, "start")
configure(stop, "stop")

+end+ "s at ("+x+ ","

")

+y+ ")."

* Global Space

= What you “start with”
= Stores global variables
= Lasts until you quit Python

= Where “folders” are stored

= Have to access indirectly Call Stack
¢ Call Frames offl] [
= Parameters g
= Other variables local to function %‘E L]
&)

= Lasts until function returns

Global Space

p id2

Redundant Code is BAAAAD!

start = shape.Point2(0,9)
stop = shape.Point2(0,0)

print("Where does the line start?")
x = input("x: ")
start.x = int(x)
y = input("y: ")
start.y = int(y)
print("The line starts at ("+x+ ","

+y+).

D)

print("Where does the line stop?")
x = input("x: ")

stop.x = int(x)

y = input("y: ")

stop.y = int(y)

print("The line stops at ("+x+ "

")

, Y+ "f;_—————l

Still a bit of redundancy

pt is the point object to be initialized
end type is "start" or "stop"
def configure(pt, end):
print("Where does the line "
X = input("x: ")
pt.x = int(x)

y = input("y: ")
pt.y = int(y)
print("The line

+ end +

+end+ "s at ("+x+ ",

)

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
configure(start, "start")
configure(stop, "stop")

")

Uy+)L

Yay, Helper Functions!

def get_coord(name):
X = input(name+": ")
return int(x)

def configure(pt, end):
print("Where does the line "
pt.x = get_coord("x")
pt.y = get_coord("y")
print("The line " +end+ "s at ("+str(pt.x)+

"))

)

+ end + "2")

", str(pt.y)+

start = shape.Point2(0,0)
stop = shape.Point2(0,0)
[onfigur‘e(star‘t, "start")

configure(stop, "stop")

|

Drawing Frames for Helper Functions (1)

Global Space
start|_id1 | id1

Call Stack
‘configure ‘ V 4 X
pt y

o |
o |

def get_coord(name):
1 ¢ = input(name+": ")

2 return int(c) end

def configure(pt, end):

3‘r~int("Where does the line "
4 pt.x = get_coord("x")

5 pt.y = get_coord("y")
6 print("The line " +end+ "s at ("+str(pt.x)+

+end + "?")
", estr(ptlay)+ M)

start = shape.Point2(0,9)
configure(start, "start")

Drawing Frames for Helper Functions (2)

Global Space

A

B CORRECT sta rt idl

o Call Stack
‘configure ‘ V 4 X \0_‘

ﬂget_coor‘d(name) :
T ¢ = input(name+": ")

2 return int(c)

o |

Not done!
Do not
cross out!!

pt y

end

def configure(pt, end):
print("Where does the 1i
pt.x = get_coord("x")
pt.y = get_coord("y")
print("The line "

J get_coord ‘ ‘ 1

name

o v A w

+end+ | +str(pt.y)+ ")."

start = shape.Point2(0,90)
configure(start, "start")

Frames and Helper Functions

* Functions can call each other!
e Each call creates a new call frame
* Writing the same several lines of code in 2 places? Or
code that accomplishes some conceptual sub-task? Or
your function is getting too long? Write a helper
function! Makes your code easier to
= read
= write
= edit
= debug

&

Q1: what do you do next?

Global Space
start|_id1 | id1

Call Stack
‘configure ‘ V 4 X
pt y

end

o |
o |

def get_coord(name):
1 ¢ = input(name+": ")
2 return int(c)

def confi t, end): -
ef configure(pt, end) A: Cross out the configure call frame.

3 int("Wh d the 1i

4‘;:2 i geiiiooi:z..x..i 1B Create a get_coord call frame.
C: Cross out the 4 in the call frame.
D:A&B

E:B&C

5 pt.y = get_coord("y")

6 print("The line " +end+ "

start = shape.Point2(0,9)
configure(start, "start")

Drawing Frames for Helper Functions (3)

Global Space
start|_id1 | id1

Call Stack
e] x

‘ configure ‘

Assume user types|
1 at Python shell
yrompt

o

oord(name):

1» c ="input(name+": ") pt Y E
2 return int(c) end
def configure(pt, end): Jget_coord ‘ ‘12
print("Where does the 1i
pt.x = get_coord("x") name

pt.y = get_coord("y")
print("The line "

o v A w

o[+]

+end+ | +str(pt.y)+ ")."

start = shape.Point2(0,90)

20
configure(start, "start")

)

Drawing Frames for Helper Functions (4)

Global Space

start|_id1 | id1
Call Stack

‘configure ‘ V 4 X \0_‘
pt y E

def get_coord(name):
1 c = input(name+": ")

- return int(c)

end
def configure(pt, end): Jget_coord ‘ ‘i;!
print("Where does the 1i

3
4 pt.x = get_coord("x") name
5
6

pt.y = get_coord("y")
print("The line " +end+ "|

start = shape.Point2(0,90)
configure(start, "start")

21

The Call Stack

¢ The set of function frames

drawn in call order functionl

¢ Functions frames are “stacked”
function2
= Cannot remove one above

w/o removing one below .
function3

* Python must keep the entire
stack in memory

= Error if it cannot hold stack
(“stack overflow”)

function4

function5

23

Q2: what does the call stack look like at this
point in the execution of the code?

def £3(): A B C D E
print("f3")
la]ln]|la]la]]na]
def £2():
ey [2] (2] [] [=
£3()
0 s s [s]
£3()
def f1():
print("f1")
£20) Choose 1 stack; in that stack
cross out any frames that
f1() should have ended.

nqn 1
c | "1 RETURN Eltr(pt.yn ")

Drawing Frames for Helper Functions (5)

ﬁ To do: Finish the diagram, Global Space
assuming that user types 2 sta rt id1

ur.l’yr/mn shell prompt when Call Stack
this get_coord call executes. ‘; / [5 1
x [61]

y [0]

‘ configure ‘

def get_coord(name):
1 c = input(name+": ")

2 return int(c)

3 print("Where does the 1li
4 t.x = get_coord("x")
5‘;‘c.y = get_coord("y")

6 print("The line " +end+ "|

start = shape.Point2(0,90)
configure(start, "start")

22

Errors and the Call Stack

Where does the line start?
x: 1
9 c=input(name+":") Traceback (most recent call last):
. File "v3.py", line 19, in <module>
10 rEtummt(x) configure(start, "start")
File "v3.py", line 14, in configure
pt.x = get_coord("x")
File "v3.py", line 10, in get_coord
return str(x)
NameError: name 'x' is not defined

def get_coord(name):

def configure(pt, end):
I3 print("Where does the line "

14 yot.x = get_coord("x")
J! Et.y =get_coord("y")

16 print("The line " +end+ "s at ("+x+","+y+").")

18 start = shape.Point2(0,0)
19 configure(start, "start") 24

A2: what does the call stack look like at this
point in the execution of the code?

def £3(): B
print("f3")

def f2():
prins (62
30

3()

def f1():
print("f1")
£20) Choose 1 stack; in that stack
cross out any frames that
f1() should have ended.

CE

Modules and Global Space

Global Space
Import

e Creates a global variable

(same name as module) pi | 3141592

* Puts variables, functions of e | 2718281

module in a folder

 Puts folder id in the global

variable

>>> import math

Functions and Global Space

A function definition Global Space

* Creates a global variable INCH_PER_FT[12 | id6
(same name as function)

* Creates a folder for body

* Puts folder id in the global
variable

INCH_PER_FT =12
def get_feet(ht_in_inches):
return ht_in_inches // INCH_PER_FT

Body

Storage in Python

5 id5
math ‘

get_feet

Modules vs Objects
- Global Space
>>> | - o
i math a2
- p| i3 |
>>>p= .Poi
- E_X shapes.Point3(5,2,3) R

= next line to execute

* Global Space
= What you “start with”
= Stores global variables, modules & functions
= Lasts until you quit Python Global Space

. D id2
= Where “folders” are stored
= Have to access indirectly

 Call Stack <M T
= Where Call Frames live g

= Parameters = [f2] []
o

= QOther variables local to function
= Lasts until function returns

(

Point3

>

<
N
I

Function Definition vs. Call Frame

Global Space

Globals Objects

INCHES_PER_FOOT = 12

global d1:function
def get_feet(ht_in_inches): get_feet(ht_in_inches)
feet = ht_in_inches // INCHES_PER_FOOT

return feet

INCHES_PER_FOOT 12
get_feet |idt

f = get_feet(68) Frames

print("You are at least "+str(f)+" feet talll")
get_feet

ht_in_inches 68
<<First | | <Back | Step 60f 7 | Forward> | Last>> feet 5
Return 5

ine that has just executed value

Call Frame /
(memory for function call)

It’s alive!

Don’t draw module folder, function folder

Folders that we do not require you to draw:
* Module folder is created upon import, for example,
import math

e Function folder is created with def (the function
header), for example,
def get_feet(height_in_inches):
Don’t draw those folders and the variables that
store their ids; we only explained those folders to
explain what you see in Python Tutor.

Do not draw them. »

Q3: what does the call stack look like at this
point in the execution of the code?

def £3():
print("f3")

def f2():
print("f2")
£3()
£3()
£3()

def f1():
print("f1")

‘2()

f1()

A B C

D E
Ta | [n]
IE

fi
f2
f3

f1
f2
f3

o]
o
5 |

oo

f3

Choose 1 stack; in that stack
cross out any frames that

should have ended.
® -

A3: what does the call stack look like at this
point in the execution of the code?

def £3(): A
print("f3")

def f2():
£3()

o =
def f1(): E

print("f1") Z
20) Choose 1 stack; in that stack
‘ cross out any frames that

£1() should have ended.
® -

