
Updates to Assignment 1, CS 1110 Spring 2022
The assignment itself, with corrections marked in orange, begins on the next page. On this “page 0”, we document

the time, location, and nature of the updates, in reverse chronological order.

Updates:

• Friday Feb 18, 12:15pm: Change to the submission procedure originally described in Section 2. Instead of
making a new CMS assignment for the second half of A1, we have enabled (re-)submission of all files to a single
CMS assignment.

• Tue Feb 15, 5:15pm: Figure 3 has been fixed to have “\r” instead of “/r”.

• Friday Feb 11, 5pm:

– Pg. 9: missing function header restored.

– Pg. 10: typo in function name and list of function names corrected.

CS 1110 Spring 2022, Assignment 1: Pedal to the Medal
(Get live Olympics medal results)∗

http://www.cs.cornell.edu/courses/cs1110/2022sp/assignments/assignment1/a1.pdf

Navigating links in this pdf. Text in any shade of blue in this document is a clickable link.

Updates. Monitor announcements on Canvas1.2 (Non-Canvas access at http://www.cs.cornell.edu/courses/
cs1110/2022sp/announcements/archive.html.)

Don’t fear the length of this writeup! There are lots of pages just because it includes big figures and copies
of code we give you.

Figure 1: Screenshot: portion of the webpage for the United States as of midnight Tuesday Feb 9, 2022.

∗Authors: Lillian Lee, with some instructions derived from previous assignments by Walker White and David Gries and formatting
initially created by Stephen McDowell.
I would have dearly loved to be able to entitledthis assignment “Petal to the medal”. My best attempt at doing so was to make a

tortured connection to the recent Olympics in Japan, where the torch was designed to look like a flower with petals.
1https://canvas.cornell.edu/courses/25213/announcements
2Throughout, we include both footnotes and clickable links because the clickable links may not work for all readers. The URL in the

footnotes can be copy-pasted into a browser as a last resort.

1

http://www.cs.cornell.edu/courses/cs1110/2022sp/assignments/assignment1/a1.pdf
https://canvas.cornell.edu/courses/25213/announcements
http://www.cs.cornell.edu/courses/cs1110/2022sp/announcements/archive.html
http://www.cs.cornell.edu/courses/cs1110/2022sp/announcements/archive.html
https://canvas.cornell.edu/courses/25213/announcements

Contents
1 Rules 2

1.1 Working with a Partner (You Can Have At Most One) . 2
1.2 What Collaborations Are (Dis-)Allowed And How To Document Them . 2
1.3 Python You Are NOT Allowed To Use In This Assignment . 3

2 Timeline and Deadlines 3
2.1 Can we revise in response to grader feedback? . 3

3 Task Overview: Extracting Live Olympic Medal Information 3
3.1 Key intuitions . 5

3.1.1 How to get at a team’s data: use string operations to create a URL string 5
3.1.2 How to extract data for a given medal: the logic of leveraging patterns in the webpage source 5

3.2 The files you need . 6
3.3 Desired/required function-call structure for the entire assignment . 6
3.4 Your task: the one-line description (full descriptions in Section 4 and Section 5) 6

4 Collaboration/Academic Integrity Policy Acknowledgment 7

5 Iterative Development (How to Work Through the Assignment) 7

6 Grand Finale 10

7 Code Cleanup 10

8 Pre-Submission Checklist and What to Submit 11

9 Team codes 11

1 Rules

1.1 Working with a Partner (You Can Have At Most One)
The code you submit can be written by you alone, or you can make a joint submission written by you and exactly
one other person.

If you are partnering, the two of you must officially form a group on CMS BEFORE submitting.
which will link your submission “portals” . More details in Section 2.

Atom has a “Teletype” feature3 enabling real-time collaboration. Previous (Spring 2021) staff members Jude
Javillo, Jonathan Su, and Emily Parker recommend it for its “Google Docs”-like feel, but observe “one thing to note
is that the person who shares the link for teletype will have the updated version but their partner won’t be able to
save it”. Prior (Spring 2021) staff member Ben Rosenberg also recommends repl.it4 .

If your partnership dissolves, see our Collaboration Policies5’ item on the “group divorce scenario”.

1.2 What Collaborations Are (Dis-)Allowed And How To Document Them
The full collaboration policy is on the course Academic Integrity page6. Read it.

As our advice on working with a partner7 says, “We strongly advise against splitting the work; rather, the two
of you should make sure both of you could, by the end, be able to do the assignment individually. Otherwise, you
won’t get all the practice the assignment is meant to provide.”

3https://teletype.atom.io/
4https://repl.it/
5https://bit.ly/3sxzJdV
6http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html
7http://www.cs.cornell.edu/courses/cs1110/2022sp/resources/doing-assignments.html

2

https://teletype.atom.io/
https://repl.it/
https://bit.ly/3sxzJdV
http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html
http://www.cs.cornell.edu/courses/cs1110/2022sp/resources/doing-assignments.html
https://teletype.atom.io/
https://repl.it/
https://bit.ly/3sxzJdV
http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html
http://www.cs.cornell.edu/courses/cs1110/2022sp/resources/doing-assignments.html

1.3 Python You Are NOT Allowed To Use In This Assignment
You may not use, and do not need, any Python constructs not yet covered by the labs, lectures, or posted lecture
slides by the time this assignment was released.8 We want you to demonstrate your skills with the Python we have
taught so far.

2 Timeline and Deadlines
Change to item 4: we decided to re-use the same CMS assignment as for the 1st half of A1.

1. If you are partnering: well before Thu, Feb 17, follow our “How to form a group on CMS” instructions9. Both
parties need to act on CMS10 in order for the grouping to take effect.

Once partnered on CMS, only one of you need submit on the partnership’s behalf, but you can both submit
multiple times. Whichever of you submits the latest before the deadline, that last submission will be what we
grade for your group.

2. By 2pm Ithaca time on Thu, Feb 17, submit whatever you have done on a1_first.py and policy_acknowledgment.py
to CMS11. Then, do steps 2 and 3 of our “Updating, verifying, and documenting assignment submission” in-
structions. It is OK if you haven’t finished yet; CMS lets you update submissions until the final deadline.

3. By 11:59pm Ithaca time on Thu, Feb 17, make your final submission of a1_first.py and policy_acknowledgment.py,
and save the prove-you-submitted screenshots.

4. Sometime on Fri, Feb 18, we will transfer the CMS groupings you made in Deadline 1 to a “new” CMS
assignment for a1_second.py, and open it for submission. (This implies that you cannot change partners for
a1_second.py.)

5. By 2pm Ithaca time on Mon, Feb 21, (re-)submit whatever you have done on a1_second.pyall three submission
files to CMS, and save the prove-you-submitted screenshots. It is OK if you haven’t finished yet; CMS lets you
update submissions until the final deadline.

6. By 11:59pm Ithaca time on Mon, Feb 21, make your final submission of a1_second.py, and save the prove-
you-submitted screenshots.

The 2pm checkpoints on Thu, Feb 17 and Mon, Feb 21 provide you a chance to alert us during business hours of
any submission problems. Since you’ve been warned to submit early, do not expect that we will accept
work that doesn’t make it onto CMS on time for whatever reason, including server delays stemming from
many other students trying to submit at the same time as you.12

Of course, if some special circumstances arise, contact the instructor(s) immediately.

2.1 Can we revise in response to grader feedback?
Stay focused on hitting the deadlines listed above. But yes, as long as you submit something for each of the three
files by the given deadlines, you will have the chance to revise and resubmit, possibly multiple times! We’ll talk more
about this later.

3 Task Overview: Extracting Live Olympic Medal Information
The 2022 Olympics in Beijing are updating medal results as we “speak” at https://olympics.com/beijing-2022/olympic-
games/en/results/all-sports/medal-standings.htm13. But if we want to find out which medals a specific team has
won, it takes a few clicks around the site. It would be nice to have a more efficient way to look up such information.

In this assignment, you’ll write functions that will plug into a program we wrote. When done, you’ll be able to
run that program, query_olympics.py, which draws on the live medal-results website to have interactions with you

8So, no ifs, no loops, etc., even if for some reason you know what those are.
9https://www.cs.cornell.edu/courses/cs1110/2022sp/resources/cms.html#partnering

10https://cmsx.cs.cornell.edu/web/auth/
11https://cmsx.cs.cornell.edu/web/auth/
12There are no so-called “slipdays” and there is no “you get to submit late at the price of a late penalty” policy.
13https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/medal-standings.htm

3

https://www.cs.cornell.edu/courses/cs1110/2022sp/resources/cms.html#partnering
https://cmsx.cs.cornell.edu/web/auth/
https://cmsx.cs.cornell.edu/web/auth/
http://www.cs.cornell.edu/courses/cs1110/2022sp/resources/cms.html
http://www.cs.cornell.edu/courses/cs1110/2022sp/resources/cms.html
https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/medal-standings.htm
https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/medal-standings.htm
https://www.cs.cornell.edu/courses/cs1110/2022sp/resources/cms.html#partnering
https://cmsx.cs.cornell.edu/web/auth/
https://cmsx.cs.cornell.edu/web/auth/
https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/medal-standings.htm

like what’s shown in Figure 2. (So when you’re finished with A1, compare what query_olympics.py outputs for you
against what you see in this figure and what the live website displays!)

[ljl2@ushuaia assignment1] python solution/query_olympics.py

Enter "S" or "L" (without the quotes. No response = "S").
"S": use sample files on your computer.

(Avoids hundreds of people bothering the real webserver frequently/simultaneously.
Also useful in case of Internet access problems.)

"L": use the live Olympics webpages.
Your choice? S

Enter a team code (without quotes)
Or, just hit return for "united-states".
Or, type "q" to quit:
COCHRAN-SIEGLE Ryan, Alpine Skiing, Men's Super-G, Silver
DIGGINS Jessie, Cross-Country Skiing, Women's Sprint Free, Bronze
CHEN Nathan, Figure Skating, Men Single Skating, Gold
United States of America, Figure Skating, Team Event, Silver
STEVENSON Colby, Freestyle Skiing, Men's Freeski Big Air, Silver
KAUF Jaelin, Freestyle Skiing, Women's Moguls, Silver
JACOBELLIS Lindsey, Snowboard, Women's Snowboard Cross, Gold
KIM Chloe, Snowboard, Women's Snowboard Halfpipe, Gold
MARINO Julia, Snowboard, Women's Snowboard Slopestyle, Silver
......

Enter another country code,like "united-states", or <return> for "united-states", or "q" to quit: new-zealand
SADOWSKI SYNNOTT Zoi, Snowboard, Women's Snowboard Slopestyle, Gold
......

Enter another country code,like "united-states", or <return> for "united-states", or "q" to quit: norway
KILDE Aleksander Aamodt, Alpine Skiing, Men's Alpine Combined, Silver
KILDE Aleksander Aamodt, Alpine Skiing, Men's Super-G, Bronze
Norway, Biathlon, Mixed Relay 4x6km (W+M), Gold
BOE Johannes Thingnes, Biathlon, Men's 20km Individual, Bronze
ROEISELAND Marte Olsbu, Biathlon, Women's 15km Individual, Bronze
KLAEBO Johannes Hoesflot, Cross-Country Skiing, Men's Sprint Free, Gold
JOHAUG Therese, Cross-Country Skiing, Women's 7.5km + 7.5km Skiathlon, Gold
Norway, Curling, Mixed Doubles, Silver
RUUD Birk, Freestyle Skiing, Men's Freeski Big Air, Gold
GRAABAK Joergen, Nordic Combined, Individual Gundersen Normal Hill/10km, Silver
ENGEBRAATEN Hallgeir, Speed Skating, Men's 5000m, Bronze
......

Enter another country code,like "united-states", or <return> for "united-states", or "q" to quit: latvia
No medals found for latvia

......

[ljl2@ushuaia assignment1]

Figure 2: An interaction with our program when all the functions in a1_second.py are correctly implemented.
Here, we use the un-changing sample files as data — you can see this from the line “Your choice? S” — so you can
directly compare your results against this image without worrying about medal counts changing.

How can we, having just had six lectures of introductory Python, manage this task? Well, many webpages are
really just big collections of special strings your browser displays using formatting information in those strings. You
can view the underlying string for a given webpage by using the “view source” functionality of your browser.14

Figure 3 shows an excerpt of the (very slightly edited) source (that is, the underlying string) for the olympics.com
medal-standings webpage for the United States.

14Chrome: View Developer View Source . Firefox: Tools Web Developer Page Source . Safari: Develop Show Page Source . Or, right-
click or ctrl-click in the browser window often brings up a menu with an option to view page source.

4

3.1 Key intuitions
3.1.1 How to get at a team’s data: use string operations to create a URL string

There exists a python function requests.get() that can be used to fetch the contents of a webpage, if we just feed it
the right URL string as input. And, exploratory clicking around on the Olympics website reveals relevant webpages
with URLs like:

https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/noc-medalist-by-sport-trinidad-and-tobago.htm
https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/noc-medalist-by-sport-chile.htm
https://olympics.com/beijing-2022/olympic-games/en/results/all-sports/noc-medalist-by-sport-islamic-rep-of-iran.htm
Referring to the bold-faced substrings as team codes, we observe that given a team code, we can reproduce the

above pattern with an expression like
<the appropriate "http://...."" prefix> + <team code> + ".htm"
So let’s write a function data_url(prefix, c) that helps do this!

3.1.2 How to extract data for a given medal: the logic of leveraging patterns in the webpage source

How can we write a function one_medal_info(s), which, for one medal win, will tell us the following four data
items?

1. The winner name (which can be an individual or a country)

2. The sport

3. The particular event for that sport

4. The type of medal (1 is gold, 2 is silver, 3 is bronze)

<div class="playerTag" country="USA" register="1041237"><div
class="name"><a href="../../../en/results/alpine-skiing/athlete-
profile-n1041237-ryan-cochran-siegle.htm"
title="en/results/alpine-skiing/athlete-profile-n1041237-ryan-
cochran-siegle">COCHRAN-SIEGLE
RCOCHRAN-SIEGLE
Ryan</div></div></td>
<td>
<a href="../../../en/results/alpine-skiing/olympic-daily-
schedule.htm" title="en/results/alpine-skiing/olympic-daily-
schedule - Alpine Skiing"><img
src="../../../static/owg2022/img/sports/ALP.png"
role="presentation" aria-hidden="true" alt="" class="sport-icon"
align="middle">ALP</td>
<td class="StyleCenter">\rMen's Super-G</td>\r<td class="text-
center">
<img class="medal-icon"
src="../../../static/owg2022/img/medals/big/2.png" alt="2">
</td>
</tr>

…

<tr>
<td>
<div class="playerTag" country="USA" register="FSKXTEAM----
USA01"><div class="name"><a href="../../../en/results/figure-
skating/athlete-profile-nfskxteam-usa01-null-null.htm"
title="en/results/figure-skating/athlete-profile-nfskxteam-usa01-
null-null">United States of America </div></div></td>
<td>
<a href="../../../en/results/figure-skating/olympic-daily-
schedule.htm" title="en/results/figure-skating/olympic-daily-

1a. To get the winner name ,“scoop
out” the portion between the
markers.
1b. Then, get the stuff in the
scooped-out part after the last ‘>’

2. To get the sport,“scoop out” the
portion between the markers.

3. To get the event,“scoop out” the
portion between the markers.

4. To get the medal type,“scoop
out” the portion between the
markers.

Figure 3: Annotated portion of the source (html) string for the United States webpage. Green highlights: the
substrings we want to extract, corresponding to a winner name, a sport, an event for that sport, and a number
indicating the kind of medal. The original figure had a typo: it had “/r” instead of “\r” for the event part.
Incidentally, see Ed Discussion post https://edstem.org/us/courses/19140/discussion/1130087 for more on how to
deal with the evil \r.

Figure 3 highlights patterns in the underlying strings of the relevant webpages that we can take advantage of.

5

https://edstem.org/us/courses/19140/discussion/1130087

• Notice that for each of the four data items, we can do pretty much exactly the same thing: extract the data
item by “scooping out” the text between a particular pair of “starter” and “ender” markers.

So we’ll write a function scoop(text, starter, ender) which we’ll call four times in one_medal_info(s),
once for each item.

– “Scooping” means getting the text after the first occurrence of starter that is before the first following
occurrence of ender. That suggests writing helper functions after_first and before_first: with these
two helper functions in hand, the body of scoop() can be short and sweet, just consisting of calls to those
helpers.

• Note that, as stated in Figure 3 box 1, there is an extra step needed for the winner name: pull out from
the scooped-out text the part after the last occurrence of ’>’. Hence, it would be nice to have a function
after_last that one_medal_info(s) can use to clean up the winner name.

3.2 The files you need
Create a new directory on your computer. Download and unzip into that directory this zip file. The contents are:

policy_acknowledgment.py
a1_first.py
a1_second.py
query_olympics.py
cornellasserts.py
sample_data, a folder of some downloaded medals-per-country webpages, as html strings.

We’ve written the entire program query_olympics.py for you! But it won’t work “out of the box”, because it calls
functions in file a1_second.py that are currently mostly just “skeletons”: only the function-definition headers and
docstring specifications you’ll need — don’t change those — plus function bodies containing only the do-nothing
command pass.

We did after_last(), for you; you should find it useful, as per Section 3.1.2.
We’ve also given you a partially-completed testing file a1_first.py It has some purposely erroneous test

cases in it; more on that later.

3.3 Desired/required function-call structure for the entire assignment
• The program in file query_olympics.py repeatedly calls data_url() and one_medal_info() in module
a1_second.

• Function one_medal_info() in a1_second.py should/must call “helper” function scoop(), explicitly or im-
plicitly, potentially multiple times.

• Function scoop() in a1_second.py should/must call “helper” function after_first() and before_first.15

• The testing functions in a1_first.py each call the corresponding functions from a1_second.py multiple times.

You are allowed to write your own helper functions, but if you do, you must (a) provide clear specification
docstrings for them, and (b) provide adequate testing for them in a1_first.py .

3.4 Your task: the one-line description (full descriptions in Section 4 and Section 5)
Fix and complete files a1_first.py and a1_second.py, following all directions given as comments starting
“STUDENTS” in the .py files and all directions in this document.

15Such calls can be implicit if you create and use another helper function that calls scoop() .

6

http://www.cs.cornell.edu/courses/cs1110/2022sp/assignments/assignment1/a1_skeleton.zip

4 Collaboration/Academic Integrity Policy Acknowledgment
Read our Collaboration and Academic Integrity Policies16. We want you to understand points (1)-(4).

Open policy_acknowledgment.py. Insert your NetID(s) and the date into the header comments.
Paste into the file, between the first set of three double-quotes and the series of dots, the lines from the collabo-

ration policy starting with “Until all students’ . . .” and ending with “acknowledge the course staff”.
Change all the pronouns appropriately so that the subjects of all the relevant sentences are in the first person,

not the second person (implicit or explicit). In other words, “you” statements and imperatives should be changed to
“I” or “we” statements.

Below the series of dots but above the second set of three double-quotes, write down any questions you have
about policies on the aforementioned webpage; we would be more than happy to clarify anything you are wondering
about! (OK to not have any questions).

Save the file and submit it.

5 Iterative Development (How to Work Through the Assignment)
We said in Section 3.3 that there are dependencies between the functions you will write. The wisest course of action:
write and test the basic functions first before moving on to the functions that build on that basis.

Hence, develop and test the functions in a1_second.py one at a time, in the given order (since that’s
the order we put the testing functions in.) For each function, do the following.

1. Carefully read the specification for the function. In the specification docstrings, backquotes are used to
visually distinguish variable names, like this: `c` or `pref` (because we can’t use font changes or other visual
aids in comment strings). We don’t always use angle brackets the way we do in lecture because html strings
often themselves contain angle brackets.
In the below, a “team code” is how each team is referenced in the Olympics site’s URLs. The US has team
code “united-states”, Nigeria has team code “nigeria”, and so on; Section 9 has the full list.

1 def data_url(prefix, c):
2 """Returns: new string of the form prefix-c.htm
3 Precondition: `c` and `prefix` are non-empty strings

4 Example: If we had
5 prefix: "https://olympics.com/noc-medalist-by-sport"
6 c: "united-states"
7 Then this function would return the string
8 "https://olympics.com/noc-medalist-by-sport-united-states.htm"
9 """

1 def after_first(text, marker):
2 """Returns: portion of `text` starting just after the 1st occurrence of
3 `marker`.

4 Preconditions:
5 `text` [str]: contains at least one instance of `marker`
6 `marker` [str]: length > 0

7 Examples:
8 after_first("ab+c", "+") ---> 'c'
9 To be clear, that's a length-one string.

10 after_first('faith <cough> hope <cough>Charity', '<cough>') --->
11 ' hope <cough>Charity'
12 To be clear, the returned string starts with a space.
13 """

16http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html

7

http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html
http://www.cs.cornell.edu/courses/cs1110/2022sp/policies/cs1110integrity.html

1 def before_first(text, marker):
2 """Returns: portion of `text` ending just before the first occurrence of
3 `marker`.

4 Preconditions:
5 `text` [str]: contains at least one instance of `marker`
6 `marker` [str]: length > 0

7 Examples:
8 before_first("ab+c", "+") ---> 'ab'

9 before_first('faith <cough> hope <cough>Charity', '<cough>') --->
10 'faith '
11 """

1 def scoop(text, starter, ender):
2 """Returns substring of `text` that:
3 * starts just after the end of the 1st occurrence of `starter` in `text`
4 * ends just before the beginning of the 1st following occurrence of `ender`.

5 Preconditions:
6 `text` [str]: length > 0.
7 `starter` and `ender` [str]: both non-empty and occur in `text`.
8 At least one `ender` appears after a `starter` in `text`.

9 Examples:
10 scoop('+a+b+c!+4def+5','+', '!') ---> 'a+b+c'
11 scoop('good job :) good example foo(0) ', '(', ')') --> '0'
12 t = '<li style="color:purple">python the < is intentional'
13 scoop(t, '','') ---> " the < is intentional"
14 """

8

1 def one_medal_info(s):
2 """Returns string of the form
3 <winner name>!<sport>!<event>!<medal type>
4 where the relevant data is pulled from `s`.

5 These four data items should have exactly the capitalization, punctuation,
6 and spacing as in `s`.

7 See a1_first.test_one_medal_info() for examples.

8 Preconditions:

9 `s` is a string of the following form, where WN, SP, EV, and MT
10 indicates non empty word(s) with no double-quotes, angle brackets ("<" or ">"),
11 or '!', and "..." stands for anything:

12 1. `s` starts with
13 <div class="name">...>WN</div>
14 with no "<div>" or "</div>" in the middle.
15 There are no other occurrences of <div class="name"> in `s`.
16

17 [Technicality: in real data, for individual (e.g., non-team)
18 winners), there a right before the . Our
19 "wrapper" code will delete this for students.]

20 2. After that, `s` has a portion
21 daily-schedule - SP">
22 There are no other occurrences of 'daily-schedule' in `s`.
23 3. After that, `s` has a portion
24 <td class="StyleCenter">
25 EV</td>
26 There are no other occurrences of 'StyleCenter' in `s`.
27 4. After that, `s` has a portion
28 medals/big/MT.png
29 There are no other occurrences of 'medals/big/' in `s`.
30 """

2. Fix the bad test cases in a1_first.py. We’ve given you a number of test cases, so you have examples to
look at. But we also planted bad ones to ensure you carefully read the given function specifications.

We guarantee that:

• you do not need to do any fixing or adding to test_data_url(), test_before_first(), or test_one_medal_info().
(We want to save you some time.)

• Function test_after_first() contains at least two bad test cases.17

Here’s how to fix:

• For a test case where the “expected answer” is wrong, add the comment # ... STUDENT-FIXED ERROR
... under the comment that numbers the test case; comment out the incorrect assert_equals call; and
add the fixed call below, like this:

17To be clear: maybe there are just two, maybe there are three, maybe there are more. . .

9

0. first input has multiple spaces in it
... STUDENT-FIXED ERROR ... <--- added
result = a1_second.some_wonderful_function('s t a', 'st')
cornellasserts.assert_equals('', result) <--- commented out
cornellasserts.assert_equals('a', result) <--- fix added

• For a test case where the situation should not have been tested, add the comment # ... STUDENT-DELETED
CASE ... under the comment that numbers the test case; add a comment giving your reasoning, and
comment out the entire test case, like this:

1110. first input is an int
... STUDENT-DELETED CASE ... <--- added
... REASON: violates precondition <--- added
result = a1_second.brilliant_function(2, 3) <--- commented out
cornellasserts.assert_equals('3', result) <--- commented out

3. Add missing representative test cases for that function in the appropriate place in test_tag_endi()
test_after_first() and test_scoop().18 You want cases that represent valid inputs, but exhibit different
aspects of the problem the function is trying to solve, so that using your suite of test cases can catch different
types of bugs.

For each test case you add, include in a comment a short justification of what the test case represents.

4. Write the function body in a1_second.py.19

5. Run python on the script a1_first.py.20 If errors are revealed with the function you’re currently working
on, fix them and re-test.

6 Grand Finale
If you’re convinced that your code is correct, you should be able to run Python on the file query_olympics.py21

and reproduce the interaction in Figure 2!
And then, quit the program, restart it, this time enable "Live" mode, and for a given team code, like “united-

states” (see Section 9 for full list), compare your program’s results with what you see if you visit the URL that you
create with your own textttdata_url() function!

Finally, use your program to watch those medals pile up in real time!

7 Code Cleanup
Before submitting, ensure your code obeys the following.22

1. Lines are short enough (~80 characters) that horizontal scrolling is not necessary.

2. You have indented with spaces, not tabs.
18We have constructed enough test cases for you for test_data_url() and test_one_medal_info() all the other testing functions, so

you don’t need to add any more. You’re welcome.
19Sanity checks:

• If the specification says to return something, you need a return statement returning something of the correct type.

• Double-check that if the instructions said to call a certain helper, that you did indeed use that helper function.

• The functions in query_olympics.py do some string processing, so you may find it useful to look in that file for inspiration/examples.
But it is definitely not necessary to do so, and if you do choose to check that file out, don’t be intimidated by the Python in there
that you don’t know (yet).

20At the command prompt, not the >>> Python interactive prompt, enter python a1_first.py .
21At the command-shell prompt, enter python query_olympics.py .
22These requirements speed up the process of reading/grading hundreds of files.

10

3. Functions are separated from each other by at least two blank lines.

4. You have commented out any debugging print statements.

5. You have removed all pass statements.

6. If you added any helper functions, these have good docstring specifications and you have put sufficient testing
code for your functions in a1_second.py .

8 Pre-Submission Checklist and What to Submit
The files to submit to CMS23 are policy_acknowledgment.py, a1_first.py, and a1_second.py.24

Make sure the following are all true before you submit.

1. You’ve changed the header comments in all files to list the entire set of people and sources that contributed to
the code.

2. You (and your partner) have included your NetIDs in the header of all files.

3. The date in the header comments has been changed to when the files were last edited.

4. You have set your CMS notifications settings to receive email regarding grade changes, and regarding group
invitations.

5. (reminder) If working with a partner, you have grouped on CMS. (One has invited on CMS, and the other has
accepted on CMS.)

9 Team codes
Here are the “codes” that the Olympics website is using in its URLS, and which we borrow for our program:

albania, american-samoa, andorra, argentina, armenia, australia, austria, azerbaijan, belarus, belgium, bolivia,
bosnia-herzegovina, brazil, bulgaria, canada, chile, chinese-taipei, colombia, croatia, cyprus, czech-republic, timor-
leste, denmark, ecuador, eritrea, estonia, finland, france, georgia, germany, ghana, great-britain, greece, haiti, hong-
kong-china, hungary, iceland, india, ireland, islamic-rep-of-iran, israel, italy, jamaica, japan, kazakhstan, kosovo,
kyrgyzstan, latvia, lebanon, liechtenstein, lithuania, luxembourg, madagascar, malaysia, malta, mexico, monaco,
mongolia, montenegro, morocco, netherlands, new-zealand, nigeria, north-macedonia, norway, pakistan, china, peru,
philippines, poland, portugal, puerto-rico, republic-of-korea, rep-of-moldova, roc, romania, san-marino, saudi-arabia,
serbia, slovakia, slovenia, spain, sweden, switzerland, thailand, trinidad-and-tobago, turkey, ukraine, united-states,
uzbekistan, virgin-islands-us

23https://cmsx.cs.cornell.edu/web/auth/
24Do not submit any files with the extension/suffix .pyc. It will help to set the preferences in your operating system so that extensions

always appear.

11

https://cmsx.cs.cornell.edu/web/auth/
http://www.cs.cornell.edu/Projects/CMS/userdoc/notifications.html
https://cmsx.cs.cornell.edu/web/auth/

	Rules
	Working with a Partner (You Can Have At Most One)
	What Collaborations Are (Dis-)Allowed And How To Document Them
	Python You Are NOT Allowed To Use In This Assignment

	Timeline and Deadlines
	Can we revise in response to grader feedback?

	Task Overview: Extracting Live Olympic Medal Information
	Key intuitions
	How to get at a team's data: use string operations to create a URL string
	How to extract data for a given medal: the logic of leveraging patterns in the webpage source

	The files you need
	Desired/required function-call structure for the entire assignment
	Your task: the one-line description (full descriptions in Section 4 and Section 5)

	Collaboration/Academic Integrity Policy Acknowledgment
	Iterative Development (How to Work Through the Assignment)
	Grand Finale
	Code Cleanup
	Pre-Submission Checklist and What to Submit
	Team codes

