
CS 1110, LAB 03: STRINGS; TESTING

http://www.cs.cornell.edu/courses/cs1110/2018sp/labs/lab03/lab03.pdf

First Name: Last Name: NetID:

Correction on pg 2 made Tue Feb 13, 3:15pm

Getting Credit: As always, strive to finish during the lab session — it’s the best way to
stay on track in this course.1 (You are getting two weeks for this lab because of February break.)

1. Practice with String Operations and String Methods

Start up Python interactive mode2, which is what we use for quick experiments, and enter the
second line below, the one with a mixed-case word, at the >>> prompt.

0123456789 These numbers show you the indices of the first 10 characters

s = 'HeLLo WorLd!'

Now fill in the tables below, as usual.

Expression
Expected

value

Actual
value, if
different

s[1]

s[15]

s[1:7]

s[:7]

s[4:]

'e' in s

'x' in s

Expression
Expected
Value

Calculated
Value

s.index('L')

s.index('x')

s.count('o')

s.index('L',5)

this means, "look starting from index 5"

Lab authors: D. Gries, L. Lee, S. Marschner, W. White
1But if you don’t manage finish during lab, here are the alternate checkoff opportunities: (a) at ACCEL Green

room consulting hours, listed at http://www.cs.cornell.edu/courses/cs1110/2018sp/about/staff.php , from
today until Tue Feb 27 inclusive, (b) at non-professorial TA office hours from today to Wed Feb 28 3:45pm
inclusive, although at TA office hours, questions about course material or assignments take precedence over lab
check-offs; or (c) during the first 10 minutes of your next scheduled lab (Tue Feb 27 or Wed Feb 28).
Beyond that time, the staff have been instructed not to give you credit.
Labs are graded on effort, not correctness. We just want to see that you tried all the exercises, and to clarify any
misunderstandings or questions you have.

2Enter python at the command shell prompt.

1

http://www.cs.cornell.edu/courses/cs1110/2018sp/labs/lab03/lab03.pdf
http://www.cs.cornell.edu/courses/cs1110/2018sp/about/staff.php

2. The Function and Implementation of replace first in lab03.py

In this lab, you will test and debug an implementation of the following function, which could be
useful for fixing typos:

replace first(word,target,rep) returns a copy of string word with the first in-
stance of string target in word replaced by string rep. Precondition: target has
length ≥ 1 , and occurs at least once in word.

From this specification, we expect that replace first('THanks', 'H', 'h') returns 'Thanks'.

2.1. Develop further understanding through test cases. For each of the following potential
calls to replace first, state (a) whether it has valid inputs according to the specification, (b) if
so, what the output should be, (c) whether and why it would be a good additional test case given
the set of valid test cases already given.

To help you, we’ve done the first few for you.

replace first('methos', 's', 'd')

valid, 'method', good case — tests target at the very end of the string

replace first('Misissippi', 's', 'ss')

valid, 'Mississippi', good case — more than one occurrence of target.

replace first('decrepif', 'f', 't') (THIS IS A FIX OF THE ORIGINAL, which had
“decrepid”)

valid, 'decrepit', bad case — already tested target at end and single-letter targets.

replace first('aggreived', 'ei', 'ie')

replace first('em', 'em', 'umm')

2

replace first('judgement', 'e', '')

replace first('judgement', '', '!')

2.2. Use the good test cases to test an implementation of replace first.

2.2.1. The implementation and the testing files. Create a new directory on your hard drive for this
lab’s files. Then, download into that new directory the files you need for lab 03; get them from the
Labs section of the course web page, http://www.cs.cornell.edu/courses/cs1110/2018sp/labs
.

In file lab03.py, there’s a slightly incorrect implementation of replace first, which you are go-
ing to debug. But don’t look at it yet! Instead, open the separate testing file lab03 test.py in Ko-
modo Edit. In it is an incomplete test function, test replace first(), for checking lab03.replace first.
This function is called near the end of the script.

2.2.2. Understanding flow of execution in the testing file. Open a command shell and navigate3 to
your new directory with the lab 03 files in it. Then, run Python on lab03 test.py.4

You should get a message

Testing lab03.replace_first

Module lab03: all tests passed

If you get an error message instead, ask for help now.

We claim that if the second-to-last non-blank line, test replace first, had been commented
out, then the output would have been only this single line instead:

Module lab03: all tests passed

Why would the output line Testing lab03.replace first no longer get printed out?

3Use the cd commands you practiced in Lab 02; see http://www.cs.cornell.edu/courses/cs1110/2018sp/

materials/command.php for our documentation.
4That is, in the command shell, enter python lab03 test.py

3

http://www.cs.cornell.edu/courses/cs1110/2018sp/labs
http://www.cs.cornell.edu/courses/cs1110/2018sp/materials/command.php
http://www.cs.cornell.edu/courses/cs1110/2018sp/materials/command.php

2.2.3. Adding the test cases to the testing file. Lines 18-20 have, commented out, an instantiation
or implementation of the first test case from Section 2.1. This implementation uses assert equals

from module cornellasserts, which we introduced in lecture.

Finish test replace first() by uncommenting that first test case5, and then adding all your
good test cases from Section 2.1. Use lines 18-20 as a guide.

2.2.4. Finally, run the testing file to test the correctness of lab03.replace first. Save lab03 test.py,
and, in the command shell, run Python on the file again.

Because we’ve planted one or more errors in lab03.replace first, you’ll get an error message.
What is it?

Ugh!

2.3. Use print statements to check the values of variables. Now we know there’s a problem
with the given implementation. But how will we find all the problems?

print statements are perhaps the least elegant tool to use for isolating errors, but they work for
any language and environment. These statements allow us to inspect a variable immediately after
it is assigned a value.

Open up file lab03.py in Komodo Edit and look at the comments explaining what the variables
pos, before, after, and result are supposed to mean. According to those comments, not the
code itself, for the test case word: 'methos', target: 's', rep: 'd', what should the values
of these four variables be?

pos: before: after: result:

Let’s add a print statement to inspect the variable pos. Inside of replace first, right after
the assignment to pos, add, properly indented, the informative statement

print("DEBUG: pos is: " + str(pos))

While the point of the above command is to print out the value of pos, the “tag” text “DEBUG:
pos is: ” serves as a label in your output, making it more readable.

Do the analogous thing for the other three variables, before, after, and result.

Interlude: get a copy of your work off the lab machines! If you are working on a lab
machine, know that your files will be automatically deleted at some point soon after you
log out or are auto-logged out. It is therefore vitally important that, as you get near the end
of the lab, GET A COPY OF YOUR FILES TO YOURSELF — MAIL THEM TO
YOURSELF, SAVE THEM TO A USB FlASH DRIVE, or whatever works for you.

5Shortcut: select the three commented-out lines, and then in the Komodo Edit Menu go to item Code and use
“Un-comment region”.

4

Save lab03.py and run the test program again.6. Before you see the error message, you should
see four DEBUG lines printed to the screen. These are the results of your print statements. The
output helps you “visualize” what is going on in replace first(). What does the output tell you,
for the test case word: 'methdo', target: 'do', rep: 'od', that the four variables pos,
before, after, and result are actually set to by the code?

pos: before: after: result:

By comparing your “should” answers two boxes above with your “actually” answers in the box
above, you should see that there is a problem with the variable pos. Look where there’s an
assignment to pos in replace first. What is the error in that assignment statement?

Fix the error (ask a staff member if you don’t know how to fix it), save your files, and test the
procedure again by running the test script.

Alas, you should get another error, for a different test case! Using the methodology above —
looking at the printed-out values of your variables and comparing them to the values they “should”
have — how should another line in replace first be corrected?

Fix the error (ask a staff member if you don’t know how to fix it), test your program, and repeat
until all your test cases pass! What other errors did you find, if any?

2.4. Show your code to a staff member.

2.5. Afterwards, remove or comment out your debugging print statements. While your
print statements proved very useful for debugging, you do not want those print statements showing
information on the screen every time you run the procedure.7

So once you are sure the program is running correctly, you should remove all of your debugging
print statements. You can either comment them out (fine in small doses, as long as it does not
make your code unreadable), or you can delete them entirely.

6Enter python lab03 test.py at the command shell.
7In fact, their presence technically violates the function specification, since no mention of printing is made there.

5

However, once you remove these, it is important that you test the procedure one last time. You
want to be sure that you did not delete the wrong line of code by accident. Run the test script one
last time to make sure no errors were introduced by your deletions.

6

	1. Practice with String Operations and String Methods
	2. The Function and Implementation of replace_first in lab03.py
	2.1. Develop further understanding through test cases
	2.2. Use the good test cases to test an implementation of replace_first
	2.3. Use print statements to check the values of variables
	Interlude: get a copy of your work off the lab machines!
	2.4. Show your code to a staff member
	2.5. Afterwards, remove or comment out your debugging print statements.

