
CS 1110: Final Worksheet Page 1

CS 1110 Review: Final
This worksheet contains various problems for you to practice. We will go over only some problems during

the final review session and will let you take this worksheet home to practice more.

Call Frames

Draw the entire call stack for skip(‘abc’)

def skip(s):

""" Returns: copy of s odd (from end) skipped """

1 result = ""

2 if (len(s) % 2 == 1):

3 result = skip(s[1:])

4 elif len(s) > 0:

5 result = s[0]+ skip(s[1:])

6 return result

CS 1110: Final Worksheet Page 2

Draw the call stack for sumStringList([‘ 8’, ’5’, ‘ 70 ’])

1 def sumStringList(li):

2 """ Returns: the sum of a list of strings.

3 Precondition: li is list of strings of digits with

4 possible white space before or after the digits.

5 ex: li = [‘ 8 ’, ‘32’, ‘ 1’] returns 41"""

6 counter = 0

7 for x in li:

8 x = x.strip ()

9 counter +=int(x)

10 return counter

CS 1110: Final Worksheet Page 3

Draw the diagrams for the 2 object folders and the class folder when you execute:

class Cornellian(object):

""" Instance attributes:

_cuid: Cornell id [int > 0]

_name: full name [nonempty str]"""

NEXT = 1 # Class Attribute

def _assignCUID(self):

""" Assigns _cuid to next Cornell id"""

self._cuid = Cornellian.NEXT

Cornellian.NEXT = Cornellian.NEXT+1

def __init__(self , n):

""" Initializer: Cornellian with name n."""

self._name = n

self._assignCUID ()

a = Cornellian("Alice")

b = Cornellian("Bob")

>>>a = Cornellian("Alice")

>>>b = Cornellian("Bob")

CS 1110: Final Worksheet Page 4

Diagram the class folder and the constructor call frames for the following two classes when you execute

the following code:

1 class X():

2 b = 1110

3 a = 5

4 def __init__(self , d):

5 self.a = self.b

6 self.c = d

7 class Y(X):

8 b = 10

9 def __init__(self , d, a):

10 super (). __init__(a)

11 self.b=d

>>>y = X(5)

>>>x = Y(1110 ,5)

CS 1110: Final Worksheet Page 5

Classes

class Book ():

""" Instance is a book that is currently being read

Attributes:

title [str]: title of the book

sequel [Book]: sequel to the book , None if nonexistent

pages_left [int]: number of pages still unread """

def __init__(self ,):

""" Initializer for class Book

Default value for sequel is None

Default value for pages_left is 0 """

def __eq__(self , b):

""" Returns: a boolean based on whether Book b has the same

attributes as this instance """

def __str__(self):

""" Format: title (sequel , pages_left) """

sequel_str = ""

if self.sequel != None:

sequel_str = str(self.sequel)

return (self.title + " (" + sequel_str + ", " +

str(self.pages_left) + ")")

def readPages(self , n):

""" Read n number of pages in the book until the end"""

CS 1110: Final Worksheet Page 6

What are the outputs when running the following pieces of code?

>>>b1 = Book("Eldest")

>>>b2 = Book("Eragon", b1 , 30)

>>>b3 = Book("Eldest")

>>>b4 = b1

>>>

>>>print(b1 == b2)

>>>print(b1 is b2)

>>>print(b1 == b3)

>>>print(b1 is b3)

>>>print(b1 == b4)

>>>print(b1 is b4)

>>>print ()

>>>print(b1.sequel)

>>>print(b1.pages_left)

>>>print(b2.sequel)

>>>print(b2.pages_left)

>>>print(b2)

CS 1110: Final Worksheet Page 7

#class Complex with the following specification

class Complex ():

""" Instance is a complex number , with real and imaginary parts

Attributes:

real: real portion of the number [float]

imag: imaginary portion of number [float]"""

initializer

def __init__(self , real , imag):

""" Initializes attributes with floats

Precondition: real , imag can be ints or floats """

implement +

def __add__(self , other):

implement *

def __mul__(self , other):

""" Note: (a + bi) * (c + di) = (ac - bd) + (ad + bc)i"""

implement str: Complex(1, -2) looks like "1.0 + -2.0i"

def __str__(self):

implement ==

def __eq__(self , other):

subclass Real , instance is a real number

class Real(Complex):

""" Instance is a real number """

initializer for Real

def __init__(self , num):

""" Init for Real calls Complex __init__ method """

CS 1110: Final Worksheet Page 8

What is printed when the following code is executed?

>>>a = Complex(1, 2)

>>>print (a.getReal ())

>>>print (a.getImag ())

>>>print (a)

>>>b = Complex(-1, -2)

>>>print (b.getReal ())

>>>print (b.getImag ())

>>>print (b)

>>>c = Real (3)

>>>print (c.getReal ())

>>>print (c.getImag ())

>>>print (c)

>>>

>>>print ("Operation results: ")

>>>print (a + b)

>>>print (a - b)

>>>print (a * b)

>>>print (a == b)

>>>print (a == Complex(1, 2))

