
Developing Loops
from Invariants

Developing a Loop on a Range of Integers

• Given a range of integers a..b to process.
• Possible alternatives

§ Could use a for-loop: for x in range(a,b+1):
§ Or could use a while-loop: x = a; while x <= b:
§ Which one you can use will be specified

• But does not remove the need for invariants
§ Invariants: assertion supposed to be true before and

after each iteration of the loop

Suppose you are trying to implement the command

Process a..b

Write the command as a postcondition:

post: a..b has been processed.

Developing an Integer Loop (a)

Set-up using while:

while k <= b:
Process k
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (b)

Add the invariant:

invariant: a..k-1 has been processed
while k <= b:

Process k
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (c)

Note it is post condition
with the loop variable

Fix the initialization:

init to make invariant true
invariant: a..k-1 has been processed
while k <= b:

Process k
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (d)

Has to handle the loop
variable (and others)

Figure out how to “Process k”:
init to make invariant true
invariant: a..k-1 has been processed
while k <= b:

Process k
implementation of “Process k”
k = k + 1

post: a..b has been processed.

Developing an Integer Loop (e)

• Pay attention to range:
a..b or a+1..b or a…b-1 or …

• This affects the loop condition!
§ Range a..b-1, has condition k < b
§ Range a..b, has condition k <= b

• Note that a..a-1 denotes an empty range
§ There are no values in it

• a..b how many elements? b – a + 1

Range

Horizontal Notation for Sequences

Example of an assertion about an sequence b. It asserts that:
1. b[0..k–1] is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k–1] is ≤ everything in b[k..len(b)–1]

b <= sorted >=
0 k len(b)

Algorithm Inputs

• We may specify that the list in the algorithm is
§ b[0..len(b)-1] or
§ a segment b[h..k] or
§ a segment b[m..n-1]

• Work with whatever is given!

• Remember formula for # of values in an array segment
§ Following – First
§ e.g. the number of values in b[h..k] is k+1–h.

?
h k

b

Example Question, Fall 2013 Final

• Example:
§ Input [1, 2, 2, 2, 4, 4, 4]
§ Output [1, 2, 2, 2, 1, 2, 4]

sorted
0 k

pre: b

0 h k

post: b Unchanged, values in
b[h+1..k]

b[0..k] w/o duplicates

inv: b

0 p h k

??? Unchanged, values
all in b[h+1..k]

b[p+1..k] w/o duplicates

Solution to Fall 2013 Final

Assume 0 <= k, so the list segment has at least one element
p =
h =
inv: b[h+1..k] is original b[p+1..k] with no duplicates
b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list
while :

inv: b

0 p h k

unchanged Unchanged, values
all in b[h+1..k]

b[p+1..k] w/o duplicates

Solution to Fall 2013 Final

Assume 0 <= k, so the list segment has at least one element
p = k-1
h = k-1
inv: b[h+1..k] is original b[p+1..k] with no duplicates
b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list
while :

inv: b

0 p h k

unchanged Unchanged, values
all in b[h+1..k]

b[p+1..k] w/o duplicates

Solution to Fall 2013 Final

Assume 0 <= k, so the list segment has at least one element
p = k-1
h = k-1
inv: b[h+1..k] is original b[p+1..k] with no duplicates
b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list
while 0 <= p:

inv: b

0 p h k

unchanged Unchanged, values
all in b[h+1..k]

b[p+1..k] w/o duplicates

Solution to Fall 2013 Final

Assume 0 <= k, so the list segment has at least one element
p = k-1
h = k-1
inv: b[h+1..k] is original b[p+1..k] with no duplicates
b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list
while 0 <= p:

if b[p] != b[p+1]:
b[h] = b[p]
h = h-1

p = p-1

inv: b

0 p h k

unchanged Unchanged, values
all in b[h+1..k]

b[p+1..k] w/o duplicates

• DO use variables given in the invariant.
• DON’T use other variables.

invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while ___________ :

Okay to use b, c, d, h, k, and carry
Anything else should be ‘local’ to while

DOs and DON’Ts #1

DO double check corner cases!
• h = len(c)
• while h > 0:

§ What will happen when h=1 and h=len(c)?
§ If you use h in c (e.g. c[h]) can you possibly get an error?

DOs and DON’Ts #2

invariant: b[h..] contains the sum of c[h..] and d[k..],
except that the carry into position k-1 is in 'carry'
while h > 0:

… Range is off by 1.
How do you know?

• DON’T put variables directly above vertical line.

§ Where is j?
§ Is it unknown or >= x?

DOs and DON’Ts #3

<= x x ? >= x
h i j k

b

Dutch National Flag

• Sequence of 0..n-1 of red, white, blue colors
Arrange to put reds first, then whites, then blues

• Input is the list b of integers
• Modifies the list according to the invariant.

???
0 len(b)

pre: b

0 len(b)
post: b < 0 == 0 > 0

0 j k m len(b)
Inv: b < 0 == 0 > 0???

Dutch National Flag

def dutch_national_flag(b):
j = 0; k = 0; m = len(b)
while k < m:

if b[k] == 0:
k = k + 1

elif b[k] > 0:
_swap(b, k, m-1)
m = m – 1

else: # b[k] < 0
_swap(b, k, j)
k = k + 1
j = j + 1

Inv: b < 0 == 0 > 0???
0 j k m len(b)

Dutch National Flag

def dutch_national_flag(b):
j = 0; k = 0; m = len(b)
while k < m:

if b[k] == 0:
k = k + 1

elif b[k] > 0:
_swap(b, k, m-1)
m = m – 1

else: # b[k] < 0
_swap(b, k, j)
k = k + 1
j = j + 1

0 j k m len(b)
Inv: b < 0 == 0 > 0???

dutch_national_flag([3,-1,5,-2,0])
k, j m
3 -1 5 -2 0

0 -1 5 -2 3
k, j m

0 -1 5 -2 3
j k m

-1 0 5 -2 3
j k m

-1 0 -2 5 3
j k m

-1 -2 0 5 3
j k, m

Questions?

