Developing Loops
from Invariants

Developing a Loop on a Range of Integers

* Given a range of integers a..b to process.

* Possible alternatives
= Could use a for-loop: for x in range(a,b+1):
* Or could use a while-loop: X = a; while X <= b:
= Which one you can use will be specitied
* But does not remove the need for invariants

= Invariants: assertion supposed to be true before and
after each iteration of the loop

Developing an Integer Loop (a)

Suppose you are trying to implement the command

Process a..b

Write the command as a postcondition:

post: a..b has been processed.

Developing an Integer Loop (b)

Set-up using while:

while k <=D:
Process k
k=k+1
post: a..b has been processed.

Developing an Integer Loop (c)

Add the invariant:

invariant: a..k-1 has been processed

while k <=b: Note it 1s post condition
Process k with the loop variable
k=k+1

post: a..b has been processed.

Developing an Integer Loop (d)

Fix the initialization: L[\ Has to handle the loop]

variable (and others)

init to make invariant true

invariant: a..k-1 has been processed
while k <=D:

Process k

k=k+1

post: a..b has been processed.

Developing an Integer Loop (e)

Figure out how to ‘“‘Process k”’:
init to make invariant true
invariant: a..k-1 has been processed
while k <=D:
Process k
implementation of “Process k”
k=k+1
post: a..b has been processed.

Range

e Pay attention to range:
a.b or a+1.b or a...b-1 or...
* This affects the loop condition!
= Range a..b-1, has condition k < b
= Range a..b, has condition k <=b
* Note that a..a-1 denotes an empty range

= There are no values 1n 1t

* a..b how many elements? b—a+ 1

Horizontal Notation for Sequences

0 k len(b)
b <= sorted >=

Example of an assertion about an sequence b. It asserts that:
1. b[0.k-1]1s sorted (i.e. its values are in ascending order)

2. Everything in b[0.k-1] is < everything in b[k..len(b)-1]

Algorithm Inputs

 We may specity that the list in the algorithm 1s
= b[0..len(b)-1] or
= asegment b[h..k] or

" asegment b[m..n-1]

 Work with whatever is given!

h k
b ?

 Remember formula for # of values in an array segment
= Following — First
= e.g.the number of values in b[h. k] 1s k+1-h.

Example Question, Fall 2013 Final

0 k
pre: b sorted
0 h k
, Unchanged, values in b[0..k] w/o duplicates
post: b bh-+1..k]
0 P h k
inv: b 27? Unchanged, values | 111 k] w/o duplicates
all in b[h+1..k]
 Example:
= Input [1,2,2,2,4,4,4]

= Qutput [1,2,2,2,1,2,4]

Solution to Fall 2013 Final

0 P h k

Unchanged, values

b[p+1..k] w/o duplicates
all in b[h+1..k] [p Iw/ P

inv: b | unchanged

Assume 0 <=k, so the list segment has at least one element
p=

h =

inv: b[h+1..K] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list

while

Solution to Fall 2013 Final

0 P h k

Unchanged, values

inv: b | unchanged b[p+1..k] w/o duplicates

all in b[h+1..k]
Assume 0 <=k, so the list segment has at least one element
p=k-1
h=k-1

inv: b[h+1..K] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list

while

Solution to Fall 2013 Final

0 P h k

Unchanged, values

b[p+1..k] w/o duplicates
all in b[h+1..k] [p Iw/ P

inv: b | unchanged

Assume 0 <=k, so the list segment has at least one element
p=k-1

h=k-1

inv: b[h+1..K] is original b[p+1..k] with no duplicates

b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list

while O <= p:

Solution to Fall 2013 Final

0 P h k

Unchanged, values

b[p+1..k] w/o duplicates
all in b[h+1..k] [p Iw/ P

inv: b | unchanged

Assume 0 <=k, so the list segment has at least one element
p=k-1
h =k-1
inv: b[h+1..K] is original b[p+1..k] with no duplicates
b[p+1..h] is unchanged from original list w/ values in b[h+1..k]
b[0..p] is unchanged from original list
while 0 <=p:
if b[p] != b[p+1]:
b[h] = b[p]
h=h-1
p=pl

DOs and DON’Ts #1

* DO use variables given 1n the invariant.
e DON’T use other variables.

invariant: b[h..] contains the sum of ¢[h..] and d[k..],
except that the carry into position k-1 is in 'carry’
while :

Okay to use b, ¢, d, h, k, and carry

Anything else should be ‘local’ to while

DOs and DON’Ts #2

DO double check corner cases!
e h=len(c)
e while h > 0:

* What will happen when h=1 and h=len(c)?
= If you use hin ¢ (e.g. c[h]) can you possibly get an error?

invariant: b[h..] contains the sum of ¢[h..] and d[k..],
except that the carry into position k-1 is in 'carry’

while h > O:
Range 1s off by 1.
How do you know?

DOs and DON’T's #3

e DON’T put variables directly above vertical line.

" Where 1s j?

= [s it unknown or >= x?

Dutch National Flag

* Sequence of 0..n-1 of red, white, blue colors
Arrange to put reds first, then whites, then blues

* Input 1s the list b of integers

* Modifies the list according to the invariant.

pre: b

post: b

Inv: b

0 len(b)
?7?7?
0 len(b)
<0 ==0 >0
0 j k len(b)
<0 ==0 27?7 >0

Dutch National Flag

k

Inv: b <0

==0

277

>0

def dutch_national_flag(b):

while k < m:

if b[k] == 0:

. k=k+1

elif b[k] > O:

’ _swap(b, k,
m=m-1

else: #Db[k] <O

_swap(b, K,)

k=k+1

j=i+1

j=0;k=0; m=len(b)

)

len(b)

Dutch National Flag

Inv: b <0

?7?

>0

def dutch_national_flag(b):

while k < m:

if b[k] == 0:

. k=k+1

elif b[k] > O:

’ _swap(b, k,
m=m-1

else: #Db[k] <O
_swap(b, K,)
k=k+1
j=i+1

j=0;k=0; m=len(b)

)

len(b)

dutch_national flag([3,-1,5,-2,0])

m

K,]
3 -1 5 -2 0
K,] m
0 -1 5 -2 3
J k m
0 -1 5 -2 3
J k m
-1 0 5 -2 3
J k m
-1 0 -2 5 3
j k, m
-1 -2 0 5 3

Questions?

