2

CS 1110 Spring 2018, Assignment 5*

You may not use for-loops in any code you implement.

Change the code for a5_player. HumanConsolePlayer.addCardToHand() so that the body of the method is not
in an if-statement. This allows human players to have more than one of the same card in their hand.

Clarification for draws when the deck is almost empty:

— In Uno._drawHand(), if the deck has n cards left in the deck, the method should return
min(Uno.STARTING_HAND _SIZE, n) cards.

— In Uno.play(), if the player is supposed to draw n cards and there are k | n cards left in the deck, the
player draws k cards and the numExtraCardDraw attribute of the game state is reset to 0.

In your submission, leave in pass statements that are in places where you didn’t write code. (These are needed
for the methods of the “abstract” class to be syntactically correct.)

If you are wondering where your print-statement output is going when checking your code with a5_unochecks.py
(i.e., you don’t see any print-statement output), look at line 398, and comment it out to bring print-statement
output back.

In general, we strongly recommend carefully reading any test code we supply to make sure you understand
exactly what it is doing.

Motivation: Uno

For this assignment we will exercise a few different concepts: while loops, classes, and sub-classes. We do this by
implementing a simplified version of the game of Uno.

In Uno, players take turns attempting to play a card from their hand and add it to the top of a common pile of
cards. Cards can only be added to the pile if they match at least either the suit or the rank of the top card on the
pile or if the card being added is a wild card. The first player who has gotten rid of all their cards wins!

Because we can’t afford to license Uno for this class, we’re going to implement a slightly simplified version of the
game based on standard playing cards. We’ll treat certain cards as the special cards in a game of Uno based on their

rank,

following this guide:
10s are Reverse cards, which reverse the order of play.
Jacks are Skip cards, which skip over the next player.

Queens are Draw T'wo cards, which force the next player to draw 2 cards before the start of their turn. Unlike
the traditional Uno rules, we’ll allow that player to continue to play their turn like normal after taking their
extra cards.

Kings are Wild cards, which can be played on top of any card. Unlike traditional Uno rules, the person who
played the card does not get to choose the next suit. In our game, the Wild will set the suit to whatever suit
the King card has.

*Authors: Anthony Poon, Victoria Litvinova.

https://en.wikipedia.org/wiki/Uno_(card_game)

e Aces are Wild Draw Four cards, which has the same features of a Wild card while also forcing the next player
to draw 4 extra cards before the start of their turn.

We have provided a skeleton of this game with 6 files. Search through all files, and you will find comments with
the string TODO. These are areas that we have intentionally left blank and expect you to implement. To get a better
idea of what these files do, it is highly recommended that you read the Structure of the Code section below.

Contents
1 1
2 Motivation: Uno 1
3 Instructions 2
4 Structure of the Code 2
4.1 Major Parts and How They Interact o L o e 2
4.2 Class Structure of Player and UnoCard e e e e e e e e 3
4.3 Other Advice L e e 4
5 Rules (all the same as for previous assignment) 5
5.1 You need to re-group (so to speak) on CMS, regardless of prior groupings 5
5.2 (Dis-)allowed collaborations and documentation requirements oo oo oo e 5
6 Code cleanup and submission checklist (all the same as before except the due date) 5
6.1 Duedates e e 6
7 Optional Extensions 6

3 Instructions

Download the A5 files from the course Assignments page. Complete the parts marked as TODO in the a5_uno.py,
ab_player.py, and a5_unocard.py files. Please make sure you address every TODO. Turn in these three files. Your
changes to these three files should not rely on modifications to the other files to work. There is an additional file
that you may turn in named optional_extensions.py, but this isn’t required, and you don’t need to turn this in.

4 Structure of the Code

Because this assignment uses classes more deeply than previous assignments, it has a few more files than normal.
Classes are one way to give your code a lot more organization, but that means that functionality is often split up
into different places. To help you do your assignment, it is a good idea to understand the structure of the code so
you know how all the pieces connect.

4.1 Major Parts and How They Interact

There are four major parts to the Uno game, represented in the diagram below.

The first and most important of these is the Uno class. This class is responsible for the flow of the game. In its
init method, Uno will set up the game for a given list of players, create and shuffle the deck, and deal a starting
hand to each player. When the game is being played, the Uno class will determine who the next player is, represented
by an instance of the Player class.

The Player class encapsulates the player state, such as the hand the player currently holds. It also is responsible
for implementing the player’s actions. When the game is being played, the player must choose a card from its hand
and suggest to play it. The player is only ”suggesting” a card because the card may not be playable according to
the rules of Uno. In our implementation, we give the player a limited number of attempts to suggest a playable card
before they are forced to draw a card and skip their turn.

The UnoCard class has the responsibility of determining whether instances of this class can be played on top of
another card, according to the rules of Uno. In addition, as certain cards have special actions or abilities, this class
is responsible for performing those special actions by modifying the game state.

Lastly, the UnoGameState keeps track of the state of the game beyond individual players and cards. Imagine it
as a sort of ledger that keeps track of who the next player is, whether that player needs to draw extra cards, and
whether the play order has been reversed or not.

suggesta
card to play
Player UnoCard
determine modify
next player game state
Uno UnoGameState

This cycle will continue until Uno decides that a player has won.

4.2 Class Structure of Player and UnoCard

To provide their functionality, Player and UnoCard both have several subclasses, some of which you’ll help implement.
Their layout is described in more detail below.

The following is a class diagram for Player. You'll notice that some methods are implemented mostly in the
parent class, namely the methods that allow the Player to accept a new hand and manage it by adding and removing
cards. There are two pre-made subclasses. The RandomAiPlayer and HumanConsolePlayer have different ways to
determine what card to suggest, so both of these subclasses override the suggestACard method. If you look through
the code, you'll notice that HumanConsolePlayer also overrides some other methods, mostly to add some nice print
statements to give the human user some more insight into their player state.

__init_ (self, name)

setStartingHand(self, h)

addCardToHand(self, c)

removeCardFromHand(self, c)

suggestACard(self, topCardInPile,
attemptsRemaining)

notifyMotAcceptableCard(self, suggestedCard)

Player

RandomAiPlayer

HumanConsolePlayer

suggestACard(self, topCardInPile,
attemptsRemaining)

addCardToHand(self, c)
removeCardFromHand (self, c)
suggestACard(self, topCardInPile,
attemptsRemaining)
notifyMotAcceptableCard(self, suggestedCard)

The following is a class diagram for UnoCard.

/ UnoCard

__dinit_ (self, suit, rank)

_ str_ (self)
isPlaceableOnTop(self, c)
performAction(self, gameState)

/ ReverseActionCard

__init_ (self, suit)
performAction(self, gameState)

—/

__init_ (self, suit)
performAction(self, gameState)

SkipActionCard

./

__init_ (self, suit)
isPlaceableOnTop(self, c)

WildUnoCard

/ DrawTwoActionCard

__init_ (self, suit)
performAction(self, gameState)

UnoCard extends from the Card class that you've seen previously. This allows UnoCard to reuse some of Card’s
functionality. Relevant to the game of Uno, UnoCard defines two additional methods: isPlaceableOnTop implements
restrictions on which card can be played on top of another card. performAction allows special cards to modify
the game state. There are several subclasses of UnoCard to implement the functionality of the special cards. You’ll
notice WildUnoCards also form their own subclass hierarchy under UnoCard. Subclasses allow us to share functionality
between class definitions, but also change functionality where appropriate as classes become increasingly specialized.

4.3 Other Advice

We’ve provided a5_unochecks.py which provides some tests to help you check that your code is working successfully.
This file uses a different framework than the Cornell Asserts package that we’ve been using before, but the underlying
concepts are the same. You can run these tests by running python a5_unochecks.py from your command prompt

or terminal.

/" WildDrawFourActionCard

__init_ (self, suit)
performAction(self, gameState)

Do not assume that your assignment is perfect simply because it passes all the tests provided in ab_unochecks. py!
Pay close attention to the specifications of the methods you are implementing. We also encourage you to write
additional tests as you think necessary to help you correctly implement your assignment. If you run into issues,
adding debug print statements of your players’ hands, the first card in the deck, the last card added to the pile, and
the game state object in each player’s turn can help you better understand how your game is progressing.

We also hope you find time to gain some useful insight into how to write and test object-oriented code by reading
the other parts of the assignment.

5 Rules (all the same as for previous assignment)

There is no revise-and-resubmit for this or any subsequent assignment unless otherwise noted.

5.1 You need to re-group (so to speak) on CMS, regardless of prior groupings

You may work alone or with just one other person, who can be someone you’ve grouped with before in CS1110, or
a different person.

If you are partnering, regardless of whether you were grouped in a previous assignment, the two of you must still
form a new group specifically for this assignment on CMS before submitting.'

If your partnership dissolves, see the course Academic Integrity description about “group divorce” for what to
do.

5.2 (Dis-)allowed collaborations and documentation requirements

Our policies are laid out in full on the course Academic Integrity page, but we re-state here the main rules: where
“you” means you and, if there is one, your one CMS-registered group partner,

1. Never look at, access or possess any portion of another group’s work in any form.
2. Never show or share any portion of your work in any form to anyone except a member of the course staff.
3. Never request solutions from outside sources; for example, on online services like StackOverflow.

4. DO specifically acknowledge by name all help you received, whether or not it was “legal” according to (1)-(3).

6 Code cleanup and submission checklist (all the same as before except
the due date)

Before submitting, ensure your code obeys the following.”

e Lines are short enough (780 characters) that horizontal scrolling is not necessary. (We’ve sometimes violated
this for readability.)

e You have indented with spaces, not tabs (this is not an issue if using Komodo Edit).
e You have removed any debugging print statements.

e You have removed all pass statements that were provided with the initial code.

e You have removed “instruction” comments, typically marked “# TODO”.

e If you added any helper functions, these have good docstring specifications and you have put sufficient testing
code for your functions.

Make sure the following are all true before you submit.

1. You (and your partner) have included your name(s) and NetID(s) in the header of all files.

IThis links your submission “portals”.
20ne reason for these requirements is that they speed up the process of reading hundreds of files.

http://cms.csuglab.cornell.edu
http://www.cs.cornell.edu/courses/cs1110/2018sp/about/integrity.php#scenario2
http://www.cs.cornell.edu/courses/cs1110/2018sp/about/integrity.php

2. You've also indicated in the file headers the names of any (non-staff) people whose help should be acknowledged.
3. The date in the header comments has been changed to when the files were last edited.

4. You have set your CMS notifications settings to receive email regarding grade changes, and regarding group
invitations.

6.1 Due dates

1. If you are partnering: well before submission, follow the instructions in the “How to form a group” instructions
on the course Assignments page. Both parties need to act on CMS in order for the grouping to take effect.

2. By 2pm on Wed May 9, submit whatever you have done at that point to CMS, following steps 1-3 in the
“Updating, verifying, and documenting assignment submission” section of the course Assignments page. It is
OK if you haven’t finished working on the files yet.

3. By 11:59pm on Wed May 9, make your final submission, again following the aforementioned steps 1-3.”

7 Optional Extensions

One nice thing about object-oriented programming is that it provides a built-in framework for expanding the func-
tionality of your application. For this assignment, we offer you the option of submitting some extensions to the Uno
game. This is entirely optional and no extra credit will be offered. How would you extend the Uno game to add
functionality? Are there different types of Players or Cards that could be created? What if you wanted to implement
an entirely different card game?

If you would like to submit some extensions for our consideration, please do so a new file named optional _extensions.py
and submit this file alongside your assignment. If your extensions require modifications to the base Uno, Player,
UnoCard, or UnoGameState classes in a manner that those classes do not work without your modifications, then please
instead create copies of these classes in your optional_extensions.py. Please make sure that your implementation
of the Uno game still works without the optional_extensions to get credit for the assignment.

3The 2pm checkpoint on Wed May 9 provides you a chance to alert us during business hours if any problems arise. Since you’ve been
warned to submit early, do not expect that we will accept work that doesn’t make it onto CMS on time, for whatever reason. There
are no so-called “slipdays” and there is no “you get to submit late at the price of a late penalty” policy. Of course, if some special
circumstances arise, contact the instructor(s) immediately.

http://www.cs.cornell.edu/Projects/CMS/userdoc/notifications.html
http://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php#partnering
http://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php#partnering
http://cms.csuglab.cornell.edu
http://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php
http://www.cs.cornell.edu/courses/cs1110/2018sp/assignments/index.php

	Updates
	Motivation: Uno
	Instructions
	Structure of the Code
	Major Parts and How They Interact
	Class Structure of Player and UnoCard
	Other Advice

	Rules (all the same as for previous assignment)
	You need to re-group (so to speak) on CMS, regardless of prior groupings
	(Dis-)allowed collaborations and documentation requirements

	Code cleanup and submission checklist (all the same as before except the due date)
	Due dates

	Optional Extensions

