
Sorting and Searching

Lecture 23

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

• Final Exam conflicts due tonight at 11:59pm
• Final Exam review sessions on the 14th

• Labs on 5/9 and 5/10 will be office hours
• Assignment 5
 Due 11:59pm on ***Wednesday*** May 10th

• Lab 13 is out

5/2/17 Sorting and Searching 2

Recall: Accessing the “Original” Method

• What if you want to use the
original version method?
 New method = original+more
 Do not want to repeat code

from the original version

• Call old method explicitly
 Use method as a function
 Pass object as first argument

• Example:
Employee.__str__(self)

class Employee(object):
"""An Employee with a salary"""
…
def __str__(self):

return (self._name +
', year ' + str(self._start) +
', salary ' + str(self._salary))

class Executive(Employee):
"""An Employee with a bonus."""
…
def __str__(self):

return (Employee.__str__(self)
+ ', bonus ' + str(self._bonus))

5/2/17 Sorting and Searching 3

super

• Can also use super
• super(<class>,

<instance>) returns the
parent class of <class> and
<instance>

• Example:
super(Executive, self).__str__()

class Employee(object):
"""An Employee with a salary"""
…
def __str__(self):

return (self._name +
', year ' + str(self._start) +
', salary ' + str(self._salary))

class Executive(Employee):
"""An Employee with a bonus."""
…
def __str__(self):

return (super(Executive, self).__str__()
+ ', bonus ' + str(self._bonus))

5/2/17 Sorting and Searching 4

Dutch National Flag Variant

• Sequence of integer values
 ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
 Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

5/2/17 Sorting and Searching 5

Dutch National Flag Variant

• Sequence of integer values
 ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive
 Only rearrange part of the list, not all

?
h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0
h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

5/2/17 Sorting and Searching 6

Dutch National Flag Algorithm
def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""
t = h; i = k+1, j = k;
inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0
while t < i:

if b[i-1] < 0:
swap(b,i-1,t)
t = t+1

elif b[i-1] == 0:
i = i-1

else:
swap(b,i-1,j)
i = i-1
j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

-1 -2 3 -1 0 0 0 6 3
h t i j k

-1 -2 3 -1 0 0 0 6 3
h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3
h t i j k

-1 -2 -1 0 0 0 3 6 3
h t j k

7

i

5/2/17 Sorting and Searching

Partition Algorithm

• Given a list segment b[h..k] with some pivot value x in b[h]:

• Swap elements of b[h..k] and store in i to truthify post:

5/2/17 Sorting and Searching 8

3 5 4 1 6 2 3 8 1 b
h k

change:

into 1 2 1 3 5 4 6 3 8b
h i k

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Sorting with Partitions

• Given a list segment b[h..k] with some value x in b[h]:

• Swap elements of b[h..k] and store in j to truthify post:

5/2/17 Sorting and Searching 11

x ?

h k
pre: b

h i i+1 k
post: b x >= x<= xy ?y >= y<= y

Partition Recursively Recursive partitions = sorting

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

i = partition(b, h, k)

b[h..i–1] <= b[i] <= b[i+1..k]

Sort b[h..i–1] and b[i+1..k]

quick_sort (b, h, i–1)

quick_sort (b, i+1, k)

5/2/17 Sorting and Searching 12

x ?

h k
pre: b

<= x x >= x
h i i+1 k

post: b

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

5/2/17 Sorting and Searching 19

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

?

h k
pre: b

v not here v ?

h i k
post: b

5/2/17 Sorting and Searching 20

Linear Search

• Vague: Find first occurrence of v in b[h..k-1].
• Better: Store an integer in i to truthify result condition post:

post: 1. v is not in b[h..i-1]
2. i = k OR v = b[i]

v not here

i
h k

?

h k
pre: b

v not here v ?

h i k
post: b

b

OR

5/2/17 Sorting and Searching 21

Linear Search

v not here

i
h k

?

h k
pre: b

v not here v ?

h i k
post: b

b

OR

v not here ?

h i k
inv: b

5/2/17 Sorting and Searching 22

Linear Search

def linear_search(b,v,h,k):
"""Returns: first occurrence of v in b[h..k-1]"""
Store in i index of the first v in b[h..k-1]
i = h

invariant: v is not in b[0..i-1]
while i < k and b[i] != v:

i = i + 1

post: v is not in b[h..i-1]
i >= k or b[i] == v
return i if i < k else -1

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

5/2/17 Sorting and Searching 23

Binary Search

• Look for v in sorted sequence segment b[h..k].

5/2/17 Sorting and Searching 24

Binary Search

• Look for v in sorted sequence segment b[h..k].
 Precondition: b[h..k-1] is sorted (in ascending order).
 Postcondition: b[h..i-1] < v and v <= b[i..k]

?

h k
pre: b

< v

h i k
post: b >= v

5/2/17 Sorting and Searching 25

Binary Search

• Look for value v in sorted segment b[h..k]

5/2/17 Sorting and Searching 26

?

h k
pre: b

< v

h i k
post: b >= v

< v

h i j k
inv: b >= v?

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9
Example b

h k
 if v is 3, set i to 0
 if v is 4, set i to 5
 if v is 5, set i to 7
 if v is 8, set i to 10

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

Binary Search

5/2/17 Sorting and Searching 27

i = h; j = k+1;
while i != j:

Looking at b[i] gives linear search from left.
Looking at b[j-1] gives linear search from right.
Looking at middle: b[(i+j)/2] gives binary search.

?

h k
pre: b

< v

h i k
post: b >= v

< v

h i j k
inv: b >= v?

Binary Search
def bsearch(b, v):

i = 0
j = len(b)
invariant; b[0..i-1] < v, b[i..j-1] unknown, b[j..] >= v
while i < j:

mid = (i+j)/2
if b[mid] < v:

i = mid+1
else: #b[mid] >= v

j = mid

if i< len(b) and b[i] == v:
return i

else:
return -1

5/2/17 Sorting and Searching 28

Analyzing the Loop
1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

Binary Search Recursive
def rbsearch(b, v):

""" len(b) > 0 """
return rbsearch_helper(b, v, 0, len(b))

5/2/17 Sorting and Searching 29

def rbsearch_helper(b, v, i, j):
if i >= j:

if i < len(b) and b[i] == v:
return i

else:
return -1

mid = (i + j) / 2

if b[mid] < v:
return rbsearch_helper(b, v, mid + 1, j)

else: # b[mid] >= v
return rbsearch_helper(b, v, i, mid)

	Sorting and Searching
	Announcements
	Recall: Accessing the “Original” Method
	super
	Dutch National Flag Variant
	Dutch National Flag Variant
	Dutch National Flag Algorithm
	Partition Algorithm
	Sorting with Partitions
	QuickSort
	Linear Search
	Linear Search
	Linear Search
	Linear Search
	Linear Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search Recursive

