
5/1/2017

1

Announcements

• Final Exam conflicts due tonight at 11:59pm

• Final Exam review sessions on the 14th

• Labs on 5/9 and 5/10 will be office hours

• Assignment 5
 Due 11:59pm on ***Wednesday*** May 10th

• Lab 13 is out

Dutch National Flag Variant

• Sequence of integer values
 ‘red’ = negatives, ‘white’ = 0, ‘blues’ = positive

 Only rearrange part of the list, not all

?

h k

pre: b

< 0 = 0 > 0
h k

post: b

inv: b < 0 ? = 0 > 0

h t i j k

pre: t = h,
i = k+1,
j = k

post: t = i

Dutch National Flag Algorithm

def dnf(b, h, k):

"""Returns: partition points as a tuple (i,j)"""

t = h; i = k+1, j = k;

inv: b[h..t-1] < 0, b[t..i-1] ?, b[i..j] = 0, b[j+1..k] > 0

while t < i:

if b[i-1] < 0:

swap(b,i-1,t)

t = t+1

elif b[i-1] == 0:

i = i-1

else:

swap(b,i-1,j)

i = i-1

j = j-1

post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0

return (i, j)

-1 -2 3 -1 0 0 0 6 3

h t i j k

-1 -2 3 -1 0 0 0 6 3

h t i j k

< 0 ? = 0 > 0

-1 -2 -1 3 0 0 0 6 3

h t i j k

-1 -2 -1 0 0 0 3 6 3

h t j k
i

Flag of Mauritius

• Now we have four colors!
 Negatives: ‘red’ = odd, ‘purple’ = even

 Positives: ‘yellow’ = odd, ‘green’ = even

?

h k

pre: b

< 0 odd < 0 even ≥ 0 odd ≥ 0 even

h k
post: b

< 0, o < 0, e ≥ 0, o ? ≥ 0, e

h r s i t k

inv: b

Linear Search

v not here

i
h k

?

h k

pre: b

v not here v ?

h i k

post: b

b

OR

v not here ?

h i k

inv: b

Linear Search

def linear_search(b,c,h):

"""Returns: first occurrence of c in b[h..]"""

Store in i the index of the first c in b[h..]

i = h

invariant: c is not in b[0..i-1]

while i < len(b) and b[i] != c:

i = i + 1

post: c is not in b[h..i-1]

i >= len(b) or b[i] == c

return i if i < len(b) else -1

Analyzing the Loop

1. Does the initialization
make inv true?

2. Is post true when inv is
true and condition is false?

3. Does the repetend make
progress?

4. Does the repetend keep the
invariant inv true?

5/1/2017

2

Binary Search

• Vague: Look for v in sorted sequence segment b[h..k].

• Better:
 Precondition: b[h..k-1] is sorted (in ascending order).

 Postcondition: b[h..i] <= v and v < b[i+1..k-1]

• Below, the array is in non-descending order:

?

h k

pre: b

<= v

h i k

post: b

Called binary search
because each iteration

of the loop cuts the
array segment still to
be processed in half

> v

< v

h i j k

inv: b > v?

Binary Search

• Look for value v in sorted segment b[h..k]

?

h k

pre: b

< v

h i k

post: b

New statement of the
invariant guarantees
that we get leftmost
position of v if found

>= v

< v

h i j k

inv: b >= v?

3 3 3 3 3 4 4 6 7 7

0 1 2 3 4 5 6 7 8 9

Example b

h k
 if v is 3, set i to 0

 if v is 4, set i to 5

 if v is 5, set i to 7

 if v is 8, set i to 10

Binary Search

i = h; j = k+1;

while i != j:

New statement of the
invariant guarantees
that we get leftmost
position of v if found

Looking at b[i] gives linear search from left.

Looking at b[j-1] gives linear search from right.

Looking at middle: b[(i+j)/2] gives binary search.

?

h k

pre: b

< v

h i k

post: b >= v

< v

h i j k

inv: b >= v?

Sorting: Arranging in Ascending Order

?
0 n

pre: b sorted
0 n

post: b

sorted
0 i n

inv: b ?

2 4 4 6 6 7 5
0 i

2 4 4 5 6 6 7
0 i

Insertion Sort:

i = 0

while i < n:

Push b[i] down into its

sorted position in b[0..i]

i = i+1

Insertion Sort: Moving into Position

i = 0

while i < n:

push_down(b,i)

i = i+1

def push_down(b, i):
j = i

while j > 0:

if b[j-1] > b[j]:

swap(b,j-1,j)

j = j-1

2 4 4 6 6 7 5
0 i

2 4 4 6 6 5 7
0 i

2 4 4 6 5 6 7
0 i

2 4 4 5 6 6 7
0 i

swap shown in the
lecture about lists

QuickSort

def quick_sort(b, h, k):

"""Sort the array fragment b[h..k]"""

if b[h..k] has fewer than 2 elements:

return

j = partition(b, h, k)

b[h..j–1] <= b[j] <= b[j+1..k]

Sort b[h..j–1] and b[j+1..k]

quick_sort (b, h, j–1)

quick_sort (b, j+1, k)

x ?

h k

pre: b

<= x x >= x

h i i+1 k

post: b

