CS 1110:
 Introduction to Computing Using Python

Lecture 22

Sequence Algorithms

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

- Final Exam:
- May $18^{\text {th }}, 9$ am-11:30am
- Location: Barton Hall Central and East
- Final Exam conflicts are out
- Watch email if you have not already heard
- Watch for Lab 13 coming out early
- A5 released over the weekend or next week
- No A6

Recall: Sorting

pre: $b \square^{0} \square^{n} \quad$ post: $b \square^{0}{ }^{n}$

inv: b\begin{tabular}{|c|c|}

\& \multicolumn{1}{l}{| i |
| :--- |}

| sorted, $\leq b[i .]$. | $\geq b[0 . . i-1]$ |
| :--- | :--- |\quad| First segment always |
| :--- |
| contains smaller values |

\end{tabular}

$$
i=0
$$

while $\mathrm{i}<\mathrm{n}$:
\# Find minimum val in b[i..] \# Swap min val with val at i
$\mathrm{i}=\mathrm{i}+1$

2	4	4	6	6	7	9	9	8	8

Box Notation for Sequences

Example of an assertion about an sequence b. It asserts that:

1. $\mathrm{b}[0 . . \mathrm{k}-1]$ is sorted (i.e. its values are in ascending order)
2. Everything in $\mathrm{b}[0 . . \mathrm{k}-1]$ is \leq everything in $\mathrm{b}[\mathrm{k} . . \operatorname{len}(\mathrm{b})-1]$

Given index h of the first element of a segment and

$$
(\mathrm{h}+1)-\mathrm{h}=1
$$ $b[h . . h-1]$ has 0 elements in it.

Developing Algorithms on Sequences

- Specify the algorithm by giving its precondition and postcondition as pictures.
- Draw the invariant by drawing another picture that "moves from" the precondition to the postcondition
- The invariant is true at the beginning and at the end
- The four loop design questions

1. How does loop start (how to make the invariant true)?
2. How does it stop (is the postcondition true)?
3. How does the body make progress toward termination?
4. How does the body keep the invariant true?

Generalizing Pre- and Postconditions

- Find the minimum of a sequence.

- Put negative values before nonnegative ones and return the split index.

Memory is Limited

- Memory was once very limited
- Attempts to use limited memory for multiple purposes led to famous video game bugs:

Challenges for Today's Lecture

- Cannot create new lists - must swap in place
- Assume you have a swap function:
- swap(b, i, j) swaps elements at iand j

Time is Limited

- Some algorithms take more time
- Nesting loops in A3 made it slow

Challenges for Today's Lecture

- Cannot create new lists - must swap in place
- Assume you have a swap function:
- $\operatorname{swap}(b, i, j)$ swaps elements at i and j
- Go through sequence as few times as possible
- Ideally just once!

Selection Sort

pre: $b \square^{0} \square^{n} \quad$ post: $b \square^{0}{ }^{n}$

inv: b\begin{tabular}{|c|c|}

\& \multicolumn{1}{l}{| i |
| :--- |}

| sorted, $\leq b[i .]$. | $\geq b[0 . . i-1]$ |
| :--- | :--- |\quad| First segment always |
| :--- |
| contains smaller values |

\end{tabular}

$$
i=0
$$

while $\mathrm{i}<\mathrm{n}$:
\# Find minimum val in b[i..] \# Swap min val with val at i
$\mathrm{i}=\mathrm{i}+1$

2	4	4	6	6	7	9	9	8	8

Algorithm Complexity

- Iterating through a sequence of length n requires n operations:

for x in b : \# process x
- Nested loops multiply the \# of operations:

for x in a : for y in b : \# process x and y

Requires $m * n$ operations

Algorithm Complexity

- Nested loops over the same sequence also multiply \# of operations:

for x in b : for y in b : \# process x and y

Requires $n * n$ operations

Complexity: Selection Sort

$\mathrm{i}=0$
while $\mathrm{i}<\mathrm{n}$:
Finding the min value requires its own loop. \# Find minimum val in b[i..]
\# Swap min val with val at i
$\mathrm{i}=\mathrm{i}+1$
How long does this take?
A: ~n operations
B: $\sim n^{2}$ operations CORRECT
C: $\sim n^{3}$ operations
Note: This slide was not in 9:05 lecture. Not on Final Exam.

QuickSort

- Idea: Pick a pivot element x We will just pick b[0]
- Partition sequence into $<=\mathrm{x}$ and $>=\mathrm{x}$

- Recurse on each partition

Partition Algorithm

- Given a sequence b[h..k] with some value x in $\mathrm{b}[\mathrm{h}]$:

- Swap elements of b[h..k] and then store in i:
post: b \square
change:
into

k

Partition Algorithm

- Given a sequence b[h..k] with some value x in $\mathrm{b}[\mathrm{h}]$:
h
h
k

pre: b | x | ? |
| :--- | :--- |

- Swap elements of b[h..k] and then store in i:

	h	i i+1		k
post: b	<= x	x	>= x	

- Agrees with precondition when $\mathrm{i}=\mathrm{h}, \mathrm{j}=\mathrm{k}+1$
- Agrees with postcondition when $\mathrm{j}=\mathrm{i}+1$

Partition Algorithm Implementation

def partition(b, h, k):

```
"'"Partition list b[h..k] around a pivot \(x=b[h]\)
    Returns: pivot index""'"
\(\mathrm{i}=\mathrm{h} ; \mathrm{j}=\mathrm{k}+1 ; \mathrm{x}=\mathrm{b}[\mathrm{h}]\)
\# invariant: \(\mathrm{b}[\mathrm{h} . \mathrm{i}-1]<=\mathrm{x}, \mathrm{b}[\mathrm{i}]=\mathrm{x}, \mathrm{b}[\mathrm{j} . . \mathrm{k}]>=\mathrm{x}\)
while \(\mathrm{i}<\mathrm{j}-1\) :
    if \(b[i+1]>=x\) :
        \# Move to end of block.
        swap(b,i+1,j-1)
        \(\mathrm{j}=\mathrm{j}-1\)
    else: \#b[i+1] <x
        swap(b,i,i+1)
        \(\mathrm{i}=\mathrm{i}+1\)
```

 \# post: \(\mathrm{b}[\mathrm{h} . . \mathrm{i}-1]<\mathrm{x}, \mathrm{b}[\mathrm{i}]\) is x , and \(\mathrm{b}[i+1 . \mathrm{k}]>=\mathrm{x}\)
 return i

h	i				j			
k								
1	2	1	3	0	5	6	3	8

Generalizing Pre- and Postconditions

- Dutch national flag: tri-color
- Sequence of 0..n-1 of red, white, blue "pixels"
- Arrange to put reds first, then whites, then blues

Dutch National Flag Variant

- Sequence of integer values
- 'red’ = negatives, ‘white’ = 0, ‘blues’ = positive
- Only rearrange part of the list, not all

inv: b

$$
\begin{aligned}
\text { pre: } \mathrm{t} & =\mathrm{h}, \\
\mathrm{i} & =\mathrm{k}+1, \\
\mathrm{j} & =\mathrm{k} \\
\text { post: } & =\mathrm{i}
\end{aligned}
$$

Dutch National Flag Algorithm

$\operatorname{def} \operatorname{dnf}(\mathrm{b}, \mathrm{h}, \mathrm{k})$:
""'Returns: partition points as a tuple (i,j)"""
$\mathrm{t}=\mathrm{h} ; \mathrm{i}=\mathrm{k}+1, \mathrm{j}=\mathrm{k}$;
\# inv: $b[h . . t-1]<0, b[t . . i-1]$? , $b[i . . . j]=0, b[j+1 . . k]>0$

${ }_{h}^{<0}$?						0
-1 -2	3-1	0	0	0	6		3
h	t	i					k
-1 -2	$3-1$	0	0	0	6		3

elif $b[i-1]=0$:

$$
i=i-1
$$

else:

$$
\begin{aligned}
& \operatorname{swap}(b, i-1, j) \\
& i=i-1 \\
& j=j-1
\end{aligned}
$$

\# post: b[h..i-1] < 0, b[i..j] = 0, b[j+1...k] > 0 return (i, j)

