Announcements

4/26/2017

Horizontal Notation for Sequences

Final Exam:
= May 18%, 9am-11:30am
= | ocation: Barton Hall Central and East
= Final Exam conflicts are out
» Watch email if you have not already heard
Watch for Lab 13 coming out early
AS released over the weekend or next week

No A6

0 k len(b)
b ‘ <= sorted \ >= ‘

Example of an assertion about an sequence b. It asserts that:
1. b[0..k-1]is sorted (i.e. its values are in ascending order)
2. Everything in b[0..k—1]is < everything in b[k..len(b)-1]

0 h k
b | |

Given index h of the first element of a segment and h htl
index k of the element that follows that segment,
the number of values in the segment is k — h.

b[h .. k — 1] has k — h elements in it.
b[h .. h— 1] has 0 elements in it.

(h)-h=1

Developing Algorithms on Sequences

Generalizing Pre- and Postconditions

Specify the algorithm by giving its precondition
and postcondition as pictures.
Draw the invariant by drawing another picture that
“generalizes” the precondition and postcondition

= The invariant is true at the beginning and at the end
The four loop design questions

How does loop start (how to make the invariant true)?

N~

How does it stop (is the postcondition true)?

%)

How does the body make progress toward termination?

>

How does the body keep the invariant true?

* Find the minimum of a sequence.

0
. . (values in 0..n-1
pre: b ‘ ? are unknown)
0
post: b ‘ x is the min of this segment
. . . values in j..n-1
inv: b ‘ x is min of this segment ? ()

are unknown)

« Put negative values before nonnegative ones and return the split index.

0
values in 0..n-1
pre: b ‘ ? (are unknown)
0 k
post: b ‘ <0 \ >=0
0 k i e
inv: b ‘ <0 l 9 l —0 (values in k..j-1

are unknown)

Partition Algorithm

change: b 354162381

Given a sequence b[h..k] with some value x in b[h]:
h k

pre: b‘x‘

B

Swap elements of b[h..k] and store in i to truthify post:
h i i+l k

post: b ‘ <=X ‘x‘ >=x |

h k

b ; X » x is called the pivot value

into b/121354638 = X is not a program variable

or

h i Kk = denotes value initially in b[h]

b/123134568

Partition Algorithm
* Given a sequence b[h..k] with some value x in b[h]:
h k
pre: b ‘ X ‘ bd ‘

« Swap elements of b[h..k] and store in i to truthify post:

h i itl k
post: b ‘ <=x ‘x\ >=X ‘
h i j k
inv: b ‘ <=xX lx\ ? l >=x ‘

« Agrees with precondition when i = h, j =k+1
* Agrees with postcondition when j = i+1

Partition Algorithm Implementation

def partition(b, h, k):

""" Partition list b[h..k] around a pivot x = b[h] <=X|X ? >=X
Returns: pivot index™" h i i+l j k
i=h;j=k+1; x=b[h] 1 2131 5 0l6 3 8
invariant: blh..i-1] <= x, b[i] = x, b[j..k] >= x
while i < j-1:
if b[i+1] >=x:

Move to end of block.
_swap(b,i+1,j-1)
i=j-1
else: #b[i+1] <x
_swap(b,i,i+1)
i=i+1
post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i

4/26/2017

Partition Algorithm Implementation

def partition(b, h, k):

""" Partition list b[h..k] around a pivot x = b[h] <=X|X ? >=X
Returns: pivot index™" h i i+l j k
i=h;j=k+1;x =b[h] ‘1 21311 5 0l6 3 8]
invariant: b[h..i-1] <= x, b[i] = x, b[j..k] >=x
while i <j-1: h i i+l k
Move to end of block. XA
_swap(b,i+1,j-1) h i i K
i=j-1
else: # b[i+1] <x
_swap(b,i,i+1) A
i=i+1 h ij k
post: b[h..i-1] < x, b[i] is x, and b[i+1..k] >= x
return i 121

Generalizing Pre- and Postconditions

* Dutch national flag: tri-color
= Sequence of 0..n-1 of red, white, blue "pixels"
= Arrange to put reds first, then whites, then blues

0 n
pre: b ‘ 2 | (values in 0..n-1 are unknown)
0 n
post: b‘ reds ‘ whites ‘ blues | Make the red, , blue
sections initially empty:
j 1 n |* Range i..i-1 has 0 elements
inv: b ‘ reds ‘ whites ‘ ? ‘ blues | ?han_ging. loop Variable_s.tums
invariant into postcondition.

Dutch National Flag Variant

« Sequence of integer values
= ‘red” = negatives, ‘white’ = 0, ‘blues’ = positive
= Only rearrange part of the list, not all

h k
pre: b‘ ‘ ? ‘ ‘

h k
post:b‘ ‘<0 ‘ =0 ‘ >0 ‘ ‘

h i
inv: b [<o [2[=0[>0]]

Dutch National Flag Algorithm

def dnf(b, h, k):

""" Returns: partition points as a tuple (i, <0 ? =0 >0

h t i

Dutch National Flag Algorithm

t=hji=k+1,j=k;
#inv: blh..t-1] < 0, b[t..i-1] 2, b[i.j] = 0, b{j+1.k] >0 [-1 -2|3 -1 00 0|6 3

while t<i:
if b[i-1] < 0:
swap(b,i-1,t)
t=1t+1
elif b[i-1] == 0:
| i=i1
else:
swap(b,i-1,j)
i=i-1
i=i1
post: b[h..i-1] < 0, b[i..j] = 0, b[j+1..k] > 0
return (i, j)

def dnf(b, h, k):)
""" Returns: partition points as a tuple (i, h< 0 : = 0» >0
L . t 1]
i=k+l,j=k;
#inv: blh..t-1] < 0, blt..i-1] 2, b[i.j] = 0, b[j+1..k] > 0 [-1 -2[3-10]0 063
while t <i: -— .
o h t 1 j k
if b[i-1] < 0:
swap(b,i-1,t) ‘ 12 ‘ 3 -1 ’ 000 ’ 63
t=t+1
elif b[i-1] == 0: h [ik
i=i1 [-1 2 -1]3]0 0 06 3
else: A
swap(b,i-1,j) b . X N
i=i1 J
i=jt [-1 2 -1]0 0 0[3 63
post: b[h..i-1] <0, bi..j] = 0, b[j+1..k] > 0 ~—7
return (i, j)

