
 1 class Course(object):
 2 """An instance represents an offering of a course at Cornell. There is a
 3 separate Course instance for each semester in which a course is offered.
 4 Each course also keeps track of the students who are enrolled.
 5
 6 Instance variables:
 7 title [str] -- title of course
 8 credits [int] -- number of credits
 9 students [list of Student] -- list of students enrolled in this course
 10 """
 11
 12 def __init__(self, title, credits):
 13 """A new course with the given title and number of credits.
 14 The course starts out with no students enrolled.
 15 Pre: title is a string (e.g., 'CS1110: Awesome Introduction to Python')
 16 credits is a positive integer
 17 """
 18 self.title = title
 19 self.credits = credits
 20 self.students = []
 21
 22
 23 class Schedule(object):
 24 """Instances represent a student's schedule for one semester.
 25
 26 Instance variables:
 27 student [Student] -- the student whose schedule this is
 28 semester [str] -- the semester this schedule is for
 29 courses [list of Course] -- the Courses in this schedule
 30 """
 31
 32 def __init__(self, student, semester):
 33 """A schedule for <student> in <semester>, which starts with no courses.
 34 """
 35 self.student = student
 36 self.semester = semester
 37 self.courses = []
 38
 39 def total_credits(self):
 40 """Return: the total number of credits in this schedule.
 41 """
 42 total = 0
 43 for course in self.courses:
 44 total += course.credits
 45 return total
 46
 47 def overlaps(self, other_schedule):
 48 """Return: True if this schedule contains any course with the same title
 49 as a course contained in <other_schedule>.
 50 Pre: other_schedule is a Schedule.
 51 """
 52 for course in self.courses:
 53 if other_schedule.contains_course(course):
 54 return True
 55 return False
 56
 57 def contains_course(self, query_course):
 58 """Return: True if this schedule contains a course with the same title
 59 as <query_course>.
 60 """
 61 for course in self.courses:
 62 if course.title == query_course.title:
 63 return True
 64 return False

 65
 66
 67 class Student(object):
 68 """Instances represent students at Cornell. For each student, we keep track
 69 of their schedules for each semester they've been at Cornell.
 70
 71 Instance variables:
 72 name [str] --- Name of student
 73 schedules [list of Schedule] -- the student's schedules from all semesters,
 74 in reverse chronological order. The Schedule for the current semester
 75 is at position 0 in this list.
 76 """
 77
 78 def __init__(self, name):
 79 """A new student named <name>, who starts with no schedules.
 80 Pre: <name> is a string.
 81 """
 82 self.name = name
 83 self.schedules = []
 84
 85 def start_semester(self, semester):
 86 """Set up for a new semester by adding an empty Schedule at the head
 87 of the schedules list.
 88 Pre: <semester> is a string, such as '2014sp'
 89 """
 90 self.schedules.insert(0, Schedule(self, semester))
 91
 92 def add_course(self, course):
 93 """Add a course for the current semester. This means the course is added
 94 to the student's current schedule, and the student is added to the
 95 enrollment of the course.
 96 Pre: <course> is a Course, the student has a current schedule, and <course>
 97 is not already on the current semester's schedule.
 98 """
 99 # TODO: implement this method
100
101 def validate(self, credit_limit):
102 """Return: True if the student's schedule for the current semester is
103 valid, which means that
104 (a) the total number of credits in the current semester is not over
105 <credit_limit> (credits from prior semesters don't matter)
106 (b) the student is not taking any courses in the current semester that
107 they already took in a previous semester. Course titles are used
108 to determine when a course is repeated; see Schedule.overlaps.
109 Pre: credit_limit is an integer, and the student has a current schedule.
110 """
111 # TODO: implement this method
112 # Be sure to take the time to read through all the methods in Schedule --
113 # using them makes this method much shorter to implement.
114
115
116 def test_enrollment():
117 """Test the enrollment system, making sure particularly that validation of
118 schedules works properly and that students get enrolled in the courses
119 that go on their schedules."""
120
121 # Four courses, offered in each of two semesters
122 c1_s14 = Course('CS1110: Awesome Python', 4)
123 c2_s14 = Course('CS2110: Jolly Java', 4)
124 c3_s14 = Course('CS4740: Natural Language Processing', 4)
125 c4_s14 = Course('CS4620: Computer Graphics', 3)
126 c1_f14 = Course('CS1110: Awesome Python', 4)
127 c2_f14 = Course('CS2110: Jolly Java', 4)
128 c3_f14 = Course('CS4740: Natural Language Processing', 4)
129 c4_f14 = Course('CS4620: Computer Graphics', 3)

130
131 # A student whose course enrollment validates OK
132 ljl = Student('Lillian Lee')
133 ljl.start_semester('Spring 2014')
134 ljl.add_course(c1_s14)
135 ljl.start_semester('Fall 2014')
136 ljl.add_course(c2_f14)
137 assert ljl.schedules[1].contains_course(c1_s14)
138 assert not ljl.schedules[1].contains_course(c2_f14)
139 assert not ljl.schedules[0].overlaps(ljl.schedules[1])
140 assert ljl.schedules[0].total_credits() == 4
141 assert ljl.validate(5)
142
143 # A student who is trying to re-take a course
144 srm = Student('Steve Marschner')
145 srm.start_semester('Spring 2014')
146 srm.add_course(c1_s14)
147 srm.start_semester('Fall 2014')
148 srm.add_course(c1_f14)
149 assert srm.schedules[1].contains_course(srm.schedules[0].courses[0])
150 assert srm.schedules[1].overlaps(srm.schedules[0])
151 assert not srm.validate(5)
152
153 # A student who is trying to take too many credits
154 mcp = Student('Mary Pisaniello')
155 mcp.start_semester('Fall 2014')
156 mcp.add_course(c1_f14)
157 mcp.add_course(c2_f14)
158 mcp.add_course(c3_f14)
159 mcp.add_course(c4_f14)
160 assert mcp.schedules[0].total_credits() == 15
161 assert not mcp.validate(14)
162
163 # Check that enrollments came out OK
164 assert set(c1_s14.students) == set([ljl, srm])
165 assert set(c2_f14.students) == set([ljl, mcp])
166
167
168 if __name__ == '__main__':
169 test_enrollment()

