CS 1110:
 Introduction to Computing Using Python

Lecture 21

Loop Invariants

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

- Prelim 2 conflicts due by midnight tonight
- Lab 11 is out
- Due in 2 weeks because of Prelim 2
- Review Prelim 2 announcements from previous lecture
- A4 is due Thursday at midnight
- There will only be 5 assignments.
- Can look at webpage for redistributed weights

Loop Invariants: Eat your Vegetables!

source: Wikipedia

Recall: The while-loop

while <condition>:

statement 1

repetend or body

statement n

- Relationship to for-loop
- Must explicitly ensure condition becomes false
- You explicitly manage what changes per iteration

Example: Sorting

Recall: Important Terminology

- assertion: true-false statement placed in a program to assert that it is true at that point
- Can either be a comment, or an assert command
- invariant: assertion supposed to "always" be true
- If temporarily invalidated, must make it true again
- Example: class invariants and class methods
- loop invariant: assertion supposed to be true before and after each iteration of the loop
- iteration of a loop: one execution of its body

Preconditions \& Postconditions

Solving a Problem

What statement do you put here to make the postcondition true?
$\mathrm{A}: \mathrm{x}=\mathrm{x}+1$
$\mathrm{~B}: \mathrm{x}=\mathrm{x}+\mathrm{n}$
$\mathrm{C}: \mathrm{x}=\mathrm{x}+\mathrm{n}+1$

D: None of the above
E: I don't know

Solving a Problem

What statement do you put here to make the postcondition true?

$$
\begin{array}{|l}
\mathrm{A}: \mathrm{x}=\mathrm{x}+1 \\
\mathrm{~B}: \mathrm{x}=\mathrm{x}+\mathrm{n} \\
\mathrm{C}: \mathrm{x}=\mathrm{x}+\mathrm{n}+1 \\
\mathrm{D}: \text { None of the above } \\
\mathrm{E}: \text { I don't know }
\end{array}
$$

Solving a Problem

A: $x=x+1$
B: $\mathrm{x}=\mathrm{x}+\mathrm{n}$
$C: x=x+n+1$
D: None of the above
E: I don't know

Invariants: Assertions That Do Not Change

- Loop Invariant: an assertion that is true before and after each iteration (execution of repetend)
$x=0 ; i=2$
while $\mathrm{i}<=5$:

$$
x=x+i * i
$$

$$
i=i+1
$$

\# x = sum of squares of $2 . .5$

Invariant:

$x=$ sum of squares of 2..i-1
in terms of the range of integers that have been processed so far

The loop processes the range $2 . .5$

Invariants: Assertions That Do Not Change

- Loop Invariant: an assertion that is true before and after each iteration (execution of repetend)
- Should help you understand the loop
- There are good invariants and bad invariants
- Bad:

True, but doesn't help you understand the loop

- Good:
- s[0...k] is sorted Seems useful in order to conclude that s is sorted.

Key Difference

$x=0 ; i=2$
\# Inv: $x=$ sum of squares of $2 . . i-1 \Downarrow$ Invariant:
while $i<=5$:
$\mathrm{x}=\mathrm{x}+\mathrm{i} \mathrm{i}_{\mathrm{i}}$
$\mathrm{i}=\mathrm{i}+1$
True when loop terminates Loop termination condition:
False when loop terminates
\# Post: $x=$ sum of squares of $2 . .5$

Invariants: Assertions That Do Not Change

$x=0 ; i=2$
\# Inv: x = sum of squares of 2..i-1
while $\mathrm{i}<=5$:
$x=x+i * i$
$\mathrm{i}=\mathrm{i}+1$
\# Post: $x=$ sum of squares of $2 . .5$
Integers that have been processed:

Range 2..i-1:

Invariants: Assertions That Do Not Change

$x=0 ; i=2$
\# Inv: x = sum of squares of 2..i-1
while $i<=5$:
$x=x+i * i$
$\mathrm{i}=\mathrm{i}+1$
\# Post: $x=$ sum of squares of $2 . .5$
Integers that have been processed:

Range 2..i-1:
2..1 (empty)

Invariants: Assertions That Do Not Change

$$
x=0 ; i=2
$$

\# Inv: x = sum of squares of 2..i-1
while $\mathrm{i}<=5$:
$x=x+i^{*} i$
$i=i+1$
\# Post: $x=$ sum of squares of $2 . .5$

Integers that have been processed: 2

Range 2..i-1:
2.. 2

Invariants: Assertions That Do Not Change

$$
x=0 ; i=2
$$

\# Inv: x = sum of squares of 2..i-1
while $i<=5$:
$x=x+i^{*} i$
$i=i+1$
\# Post: $x=$ sum of squares of $2 . .5$

Integers that have been processed: 2, 3

Range 2..i-1:
$2 . .3$

Invariants: Assertions That Do Not Change

$x=0 ; i=2$
\# Inv: x = sum of squares of 2..i-1
while $\mathrm{i}<=5$:

$|$| $x=x+i^{*} i$ |
| :--- |
| $i=i+1$ |

\# Post: $x=$ sum of squares of $2 . .5$

Integers that have been processed: 2, 3, 4

Range 2..i-1:
2.. 4

Invariants: Assertions That Do Not Change

$$
x=0 ; i=2
$$

\# Inv: x = sum of squares of 2..i-1 while $i<=5$:

$$
\begin{aligned}
& x=x+i^{*} i \\
& i=i+1
\end{aligned}
$$

\# Post: $x=$ sum of squares of $2 . .5$
Integers that have been processed: 2, 3, 4, 5

Range 2..i-1:
2.. 5

Invariants: Assertions That Do Not Change

$x=0 ; i=2$
\# Inv: x = sum of squares of 2..i-1
while $\mathrm{i}<=5$:
$x=x+i * i$
$i=i+1$
\# Post: $x=$ sum of squares of $2 . .5$
Integers that have been processed: 2, 3, 4, 5

Range 2..i-1:
$2 . .5$
Invariant was always true just before test of loop condition. So it's true when loop terminates

i

Designing Integer while-loops

\# Process integers in a..b
Command to do something \# inv: integers in a..k-1 have been processed
$\mathrm{k}=\mathrm{a}$
while $\mathrm{k}<=\mathrm{b}$:
process integer k

$$
k=k+1
$$

Equivalent postcondition
\# post: integers in a..b have been processed

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
\# Process b..c
\# Postcondition: range b..c has been processed

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
\# Process b..c
while $\mathrm{k}<=\mathrm{c}$:
$\mathrm{k}=\mathrm{k}+1$
\# Postcondition: range b..c has been processed

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
\# Process b..c
\# Invariant: range b..k-1 has been processed
while $\mathrm{k}<=\mathrm{c}$:
$\mathrm{k}=\mathrm{k}+1$
\# Postcondition: range b..c has been processed

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
\# Process b..c
Initialize variables (if necessary) to make invariant true
\# Invariant: range b..k-1 has been processed
while $\mathrm{k}<=\mathrm{c}$:
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# Postcondition: range b..c has been processed

Finding an Invariant

Command to do something
\# Make b True if n is prime, False otherwise
\# b is True if no int in 2..n-1 divides n, False otherwise
Equivalent postcondition
What is the invariant?

Finding an Invariant

Command to do something
\# Make b True if n is prime, False otherwise
while k < n :
\# Process k;
$\mathrm{k}=\mathrm{k}+1$
\# b is True if no int in 2..n-1 divides n, False otherwise
Equivalent postcondition
What is the invariant?

Finding an Invariant

Command to do something
\# Make b True if n is prime, False otherwise
\# invariant: b is True if no int in 2..k-1 divides n, False otherwise while k < n :
\# Process k;
$\mathrm{k}=\mathrm{k}+1$
\# b is True if no int in 2..n-1 divides n, False otherwise
Equivalent postcondition

What is the invariant?

123 ... k-1 k k+1...n

Finding an Invariant

Command to do something

\# Make b True if n is prime, False otherwise
b = True
$\mathrm{k}=2$
\# invariant: b is True if no int in 2..k-1 divides n, False otherwise while k < n :
\# Process k;
$\mathrm{k}=\mathrm{k}+1$
\# b is True if no int in 2..n-1 divides n, False otherwise
Equivalent postcondition
What is the invariant?

Finding an Invariant

Command to do something

\# Make b True if n is prime, False otherwise
b = True
$\mathrm{k}=2$
\# invariant: b is True if no int in 2..k-1 divides n, False otherwise while k < n :
\# Process k;
if $\mathrm{n} \% \mathrm{k}==0$:
b = False
$\mathrm{k}=\mathrm{k}+1$
\# b is True if no int in 2..n-1 divides n, False otherwise
Equivalent postcondition
What is the invariant?
$123 \ldots \mathrm{k}-1 \mathrm{k} k+1 \ldots \mathrm{n}$

Finding an Invariant

\# set x to \# adjacent equal pairs in s
while k < len(s):
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# x = \# adjacent equal pairs in s[0..len(s)-1]
k : next integer to process.
Which have been processed?
A: 0..k
B: 1..k
C: 0..k-1
D: 1..k-1
E: I don't know

Command to do something

$$
\text { for s = 'ebeee', x = } 2
$$

Equivalent postcondition

Finding an Invariant

\# set x to \# adjacent equal pairs in s
Command to do something

$$
\text { for s = 'ebeee', x = } 2
$$

while k < len(s):
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# x = \# adjacent equal pairs in s[0..len(s)-1]
Equivalent postcondition
k : next integer to process.
Which have been processed?
What is the invariant?
A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know
A: $x=$ no. adj. equal pairs in $s[1 . . k]$
B: $x=$ no. adj. equal pairs in $s[0 . . k]$
$\mathrm{C}: \mathrm{x}=$ no. adj. equal pairs in $\mathrm{s}[1 . . \mathrm{k}-1]$
D: $\mathrm{x}=$ no. adj. equal pairs in $\mathrm{s}[0 . . \mathrm{k}-1]$
E: I don't know

Finding an Invariant

\# set x to \# adjacent equal pairs in s
\# inv: $x=\#$ adjacent equal pairs in s[0..k-1]
while k < len(s):
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# x = \# adjacent equal pairs in s[0..len(s)-1]
k : next integer to process.
What indices have been considered?

A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know
A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know
A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know
A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know
A: $0 . . \mathrm{k}$
B: $1 . . \mathrm{k}$
C: $0 . . \mathrm{k}-1$
D: $1 . . \mathrm{k}-1$
E: I don't know

What is the invariant?

$$
\begin{aligned}
& \mathrm{A}: \mathrm{x}=\text { no. adj. equal pairs in } \mathrm{s}[1 . . \mathrm{k}] \\
& \mathrm{B}: \mathrm{x}=\text { no. adj. equal pairs in } \mathrm{s}[0 . . \mathrm{k}] \\
& \mathrm{C}: \mathrm{x}=\text { no. adj. equal pairs in } \mathrm{s}[1 . . \mathrm{k}-1] \\
& \mathrm{D}: \mathrm{x}=\text { no. adj. equal pairs in } \mathrm{s}[0 . . \mathrm{k}-1] \\
& \mathrm{E}: \text { I don’t know }
\end{aligned}
$$

Equivalent postcondition

Finding an Invariant

\# set x to \# adjacent equal pairs in s
$x=0$
\# inv: x = \# adjacent equal pairs in s[0..k-1]
while k < len(s):
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# x = \# adjacent equal pairs in s[0..len(s)-1]
k : next integer to process.
What is initialization for k ?

$$
\begin{aligned}
& \mathrm{A}: \mathrm{k}=0 \\
& \mathrm{~B}: \mathrm{k}=1 \\
& \mathrm{C}: \mathrm{k}=-1 \\
& \mathrm{D}: \mathrm{I} \text { don't know }
\end{aligned}
$$

Command to do something

```
\[
\text { for s = 'ebeee', x = } 2
\]
```

Equivalent postcondition

Finding an Invariant

\# set x to \# adjacent equal pairs in s
$\mathrm{x}=0$
$\mathrm{k}=1$
\# inv: $x=$ \# adjacent equal pairs in s[0..k-1]
while k < len(s):
\# Process k
$\mathrm{k}=\mathrm{k}+1$
\# $\mathrm{x}=$ \# adjacent equal pairs in s[0..len(s)-1]

Command to do something
for $s=$ 'ebeee', $x=2$

Equivalent postcondition
k: next integer to process.
What is initialization for k ?
$\mathrm{A}: \mathrm{k}=0$
$\mathrm{~B}: \mathrm{k}=1$
$\mathrm{C}: \mathrm{k}=-1$
$\mathrm{D}: \mathrm{I}$ don't know

Which do we compare to "process" k ?

$$
\begin{aligned}
& \text { A: } s[k] \text { and } s[k+1] \\
& \text { B: } s[k-1] \text { and } s[k] \\
& \text { C: } s[k-1] \text { and } s[k+1] \\
& \text { D: } s[k] \text { and } s[n] \\
& \text { E: } I \text { don't know }
\end{aligned}
$$

Finding an Invariant

\# set x to \# adjacent equal pairs in s
$\mathrm{x}=0$
$\mathrm{k}=1$
\# inv: $x=$ \# adjacent equal pairs in s[0..k-1]
while k < len(s):
\# Process k
$x=x+1$ if $(s[k-1]==s[k])$ else 0
$\mathrm{k}=\mathrm{k}+1$
\# x = \# adjacent equal pairs in s[0..len(s)-1]

Command to do something
for $s=$ 'ebeee', $x=2$

Equivalent postcondition
k : next integer to process.
What is initialization for k ?
$\mathrm{A}: \mathrm{k}=0$
$\mathrm{~B}: \mathrm{k}=1$
$\mathrm{C}: \mathrm{k}=-1$
$\mathrm{D}: \mathrm{I}$ don't know

Which do we compare to "process" k?

$$
\begin{aligned}
& \mathrm{A}: \mathrm{s}[\mathrm{k}] \text { and } \mathrm{s}[\mathrm{k}+1] \\
& \mathrm{B}: \mathrm{s}[\mathrm{k}-1] \text { and } \mathrm{s}[\mathrm{k}] \\
& \mathrm{C}: \mathrm{s}[\mathrm{k}-1] \text { and } \mathrm{s}[\mathrm{k}+1] \\
& \mathrm{D}: \mathrm{s}[\mathrm{k}] \text { and } \mathrm{s}[\mathrm{n}] \\
& \mathrm{E}: \mathrm{I} \text { don't know }
\end{aligned}
$$

Reason carefully about initialization

\# s is a list of ints; len(s) >= 1

1. What is the invariant?
\# Set c to largest element in s
$\mathrm{c}=$?? Command to do something
$\mathrm{k}=$? ?
\# inv:
while k < len(s):
\# Process k
$k=k+1$
\# c = largest int in s[0..len(s)-1]
Equivalent postcondition

Reason carefully about initialization

\# s is a list of ints; len(s) >= 1

1. What is the invariant?
\# Set c to largest element in s
$\mathrm{c}=$?? \quad Command to do something
$\mathrm{k}=$? ?
\# inv: c is largest element in s[0..k-1] while k < len(s):
\# Process k
$k=k+1$
\# c = largest int in s[0..len(s)-1]
Equivalent postcondition

Reason carefully about initialization

```
# s is a list of ints; len(s) >= 1
# Set c to largest element in s
c = ?? Command to do something
k= ??
# inv: c is largest element in s[0..k-1]
while k < len(s):
    # Process k
    k = k+1
# c = largest int in s[0..len(s)-1]
```

Equivalent postcondition

1. What is the invariant?
2. How do we initialize c and k?

$$
\begin{array}{ll}
\mathrm{A}: \mathrm{k}=0 ; & \mathrm{c}=\mathrm{s}[0] \\
\mathrm{B}: \mathrm{k}=1 ; & \mathrm{c}=\mathrm{s}[0] \\
\mathrm{C}: \mathrm{k}=1 ; & \mathrm{c}=\mathrm{s}[1] \\
\mathrm{D}: & \mathrm{k}=0 ; \\
\mathrm{c}=\mathrm{s}[1]
\end{array}
$$

E: None of the above

Reason carefully about initialization

```
# s is a list of ints; len(s) >= 1
# Set c to largest element in s
c = ?? Command to do something
k = ??
# inv: c is largest element in s[0..k-1]
while k < len(s):
    # Process k
    k = k+1
# c = largest int in s[0..len(s)-1]
```

Equivalent postcondition

1. What is the invariant?
2. How do we initialize c and k?

$$
\begin{aligned}
& \text { A: } k=0 ; c=s[0] \\
& B: k=1 ; c=s[0] \\
& C: k=1 ; c=s[1] \\
& D: k=0 ; \\
& c=s[1]
\end{aligned}
$$

E: None of the above

An empty set of characters or integers has no maximum. Therefore, be sure that $0 . . \mathrm{k}-1$ is not empty. You must start with $\mathrm{k}=1$.

What is the Invariant?

pre: $b \square^{0} \square^{n} \quad$ post: $b \square^{0}{ }^{n}$
inv:

First segment always contains smaller values
$\mathrm{i}=0$

while $\mathrm{i}<\mathrm{n}$:
\# Find minimum val in b[i..] \# Swap min val with val at i
$\mathrm{i}=\mathrm{i}+1$

| 244667 | 99889 |
| :--- | :--- | :--- |\quad| n |
| :--- |

