
Loop Invariants

Lecture 21

CS 1110: 
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]



Announcements

• Prelim 2 conflicts due by midnight tonight
• Lab 11 is out
 Due in 2 weeks because of Prelim 2

• Review Prelim 2 announcements from previous 
lecture

• A4 is due Thursday at midnight
• There will only be 5 assignments.
 Can look at webpage for redistributed weights



Loop Invariants: Eat your Vegetables!
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source: Wikipedia



Recall: The while-loop
while <condition>:

statement 1
…
statement n

• Relationship to for-loop
 Must explicitly ensure 

condition becomes false
 You explicitly manage 

what changes per iteration
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condition
true

false

repetend

repetend or body



Example: Sorting

?                                   
0                                         n

pre: b sorted
0                                         n

post: b

i = 0
while i < n:

# Find minimum val in b[i..]
# Swap min val with val at i
i = i+1
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Recall: Important Terminology

• assertion: true-false statement placed in a program to 
assert that it is true at that point
 Can either be a comment, or an assert command

• invariant: assertion supposed to "always" be true 
 If temporarily invalidated,  must make it true again
 Example: class invariants and class methods

• loop invariant: assertion supposed to be true before 
and after each iteration of the loop

• iteration of a loop: one execution of its body
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Preconditions & Postconditions

• Precondition: assertion 
placed before a segment

• Postcondition: assertion 
placed after a segment

# x  = sum of 1..n-1
x = x + n
n = n + 1
# x =  sum of 1..n-1

precondition

postcondition

1  2  3  4  5  6  7  8  

x contains the sum of these (6)

n

n
1  2  3  4  5  6  7  8  

x contains the sum of these (10)

Relationship Between Two
If precondition is true, then 
postcondition will be true
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Solving a Problem

# x  = sum of 1..n

n = n + 1
# x =  sum of 1..n

precondition

postcondition

What statement do you 
put here to make the 
postcondition true?

A: x =  x  +  1
B: x =  x  +  n
C: x =  x  +  n+1
D: None of the above
E: I don’t know
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Solving a Problem

# x  = sum of 1..n

n = n + 1
# x =  sum of 1..n

precondition

postcondition

What statement do you 
put here to make the 
postcondition true?

A: x =  x  +  1
B: x =  x  +  n
C: x =  x  +  n+1
D: None of the above
E: I don’t know

Remember the new value of n
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Solving a Problem

# x  = sum of 1..n

n = n + 1
# x =  sum of 1..n

precondition

postcondition

A: x =  x  +  1
B: x =  x  +  n
C: x =  x  +  n+1
D: None of the above
E: I don’t know
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1  2  3  4  5  6  7  8  

x contains the sum of these (10)

n

n
1  2  3  4  5  6  7  8  

x contains the sum of these (15)

n+1

Remember the new value of n



Invariants: Assertions That Do Not Change

x = 0; i = 2
while i <= 5:

x = x + i*i
i = i +1

# x = sum of squares of 2..5 

Invariant:
x = sum of squares of 2..i-1

in terms of the range of integers 
that have been processed so far

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

• Loop Invariant: an assertion that is true before and 
after each iteration (execution of repetend)
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Invariants: Assertions That Do Not Change
• Loop Invariant: an assertion that is true before and 

after each iteration (execution of repetend)
• Should help you understand the loop
• There are good invariants and bad invariants
• Bad: 
 2 != 1

• Good:
 s[0…k] is sorted
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True, but doesn’t help you understand the loop

Seems useful in order to conclude that 
s is sorted.



Key Difference

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 
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Invariant: 
True when loop terminates

Loop termination condition: 
False when loop terminates



Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ?

Integers that have 
been processed:

Range 2..i-1:        
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

4

3

Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)

2

2..2           
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

4

3

13

4

Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)

2

2..2           

, 3

2..3
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

4

3

13

4

29

5

Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)

2

2..2           

, 3

2..3

, 4

2..4
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)

2

2..2           

, 3

2..3

, 4

2..4

, 5

2..5
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Invariants: Assertions That Do Not Change

x = 0; i = 2
# Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

# Post: x = sum of squares of 2..5 

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

# invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Invariant was always true just 
before test of loop condition. So 
it’s true when loop terminates
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Integers that have 
been processed:

Range 2..i-1:        2..1 (empty)

2

2..2           

, 3

2..3

, 4

2..4

, 5

2..5



Designing Integer while-loops
# Process integers in a..b
# inv: integers in a..k-1 have been processed
k = a
while k <= b:

process integer k
k = k + 1

# post: integers in a..b have been processed

Command to do something 

Equivalent postcondition

trueinit cond

k= k +1;false

Process kinvariant

invariant
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Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)
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Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

# Process b..c

# Postcondition: range b..c has been processed
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Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

# Process b..c

while k <= c:

k = k + 1
# Postcondition: range b..c has been processed
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Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

# Process b..c

# Invariant: range b..k-1 has been processed
while k <= c:

k = k + 1
# Postcondition: range b..c has been processed
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Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

# Process b..c
Initialize variables (if necessary) to make invariant true
# Invariant: range b..k-1 has been processed
while k <= c:

# Process k
k = k + 1

# Postcondition: range b..c has been processed
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Finding an Invariant

# Make b True if n is prime, False otherwise

# b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something 

Equivalent postcondition
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Finding an Invariant

# Make b True if n is prime, False otherwise

while k < n:
# Process k;

k = k +1
# b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something 

Equivalent postcondition
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Finding an Invariant

# Make b True if n is prime, False otherwise

# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

# Process k;

k = k +1
# b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1  2  3  …  k-1  k k+1 … n

Command to do something 

Equivalent postcondition
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Finding an Invariant

# Make b True if n is prime, False otherwise
b = True
k = 2
# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

# Process k;

k = k +1
# b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1  2  3  …  k-1  k k+1 … n

Command to do something 

Equivalent postcondition
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Finding an Invariant

# Make b True if n is prime, False otherwise
b = True
k = 2
# invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

# Process k;
if n % k == 0:

b = False
k = k +1

# b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1  2  3  …  k-1  k k+1 … n

Command to do something 

Equivalent postcondition
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Finding an Invariant
# set x to # adjacent equal pairs in s

while k < len(s):
# Process k

k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1 
D: 1..k–1
E: I don’t know

k: next integer to process.
Which have been processed?

for s = 'ebeee', x = 2



Finding an Invariant
# set x to # adjacent equal pairs in s

while k < len(s):
# Process k

k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1 
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
Which have been processed? What is the invariant?

for s = 'ebeee', x = 2



Finding an Invariant
# set x to # adjacent equal pairs in s

# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

# Process k

k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1 
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
What indices have been considered? What is the invariant?

for s = 'ebeee', x = 2



Finding an Invariant
# set x to # adjacent equal pairs in s
x = 0

# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

# Process k

k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

k: next integer to process.
What is initialization for k?



Finding an Invariant
# set x to # adjacent equal pairs in s
x = 0
k = 1
# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

# Process k

k = k + 1
# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?



Finding an Invariant
# set x to # adjacent equal pairs in s
x = 0
k = 1
# inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

# Process k
x = x + 1 if (s[k-1] == s[k]) else 0
k = k + 1

# x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something 

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?



Reason carefully about initialization

# s is a list of ints; len(s) >= 1
# Set c to largest element in s 
c = ?? 
k = ??
# inv: 
while k < len(s):

# Process k
k = k+1

#  c = largest int in s[0..len(s)–1] 

1. What is the invariant?

Command to do something 

Equivalent postcondition
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Reason carefully about initialization

# s is a list of ints; len(s) >= 1
# Set c to largest element in s 
c = ?? 
k = ??
# inv: 
while k < len(s):

# Process k
k = k+1

#  c = largest int in s[0..len(s)–1] 

1. What is the invariant?

c is largest element in s[0..k–1]

Command to do something 

Equivalent postcondition
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Reason carefully about initialization

# s is a list of ints; len(s) >= 1
# Set c to largest element in s 
c = ?? 
k = ??
# inv: 
while k < len(s):

# Process k
k = k+1

#  c = largest int in s[0..len(s)–1] 

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something 

Equivalent postcondition

A: k = 0;  c = s[0]

B:  k = 1;  c = s[0]

C:  k = 1;  c = s[1]

D:  k = 0;  c = s[1]

E: None of the above
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Reason carefully about initialization

# s is a list of ints; len(s) >= 1
# Set c to largest element in s 
c = ?? 
k = ??
# inv: 
while k < len(s):

# Process k
k = k+1

#  c = largest int in s[0..len(s)–1] 

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something 

Equivalent postcondition

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k–1 is not empty. You must start with k = 1.

A: k = 0;  c = s[0]

B:  k = 1;  c = s[0]

C:  k = 1;  c = s[1]

D:  k = 0;  c = s[1]

E: None of the above
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What is the Invariant?

?                                   
0                                         n

pre: b sorted
0                                         n

post: b

i = 0
while i < n:

# Find minimum val in b[i..]
# Swap min val with val at i
i = i+1

4/18/17 42Loop Invariants

2  4  4  6  6   8  9  9  7  8  9
i n

2  4  4  6  6  7 9  9 8 8  9
i n

2  4  4  6  6  7   9  9  8  8  9
i n

sorted
0                                       i n

inv:   b ?

Insertion Sort:

sorted, ≤ b[i..]
0                                       i n

inv:   b ≥ b[0..i-1]
First segment always
contains smaller values
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