
Loop Invariants

Lecture 21

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

• Prelim 2 conflicts due by midnight tonight
• Lab 11 is out
 Due in 2 weeks because of Prelim 2

• Review Prelim 2 announcements from previous
lecture

• A4 is due Thursday at midnight
• There will only be 5 assignments.
 Can look at webpage for redistributed weights

Loop Invariants: Eat your Vegetables!

4/18/17 Loop Invariants 3

source: Wikipedia

Recall: The while-loop
while <condition>:

statement 1
…
statement n

• Relationship to for-loop
 Must explicitly ensure

condition becomes false
 You explicitly manage

what changes per iteration

4/18/17 Loop Invariants 4

condition
true

false

repetend

repetend or body

Example: Sorting

?
0 n

pre: b sorted
0 n

post: b

i = 0
while i < n:

Find minimum val in b[i..]
Swap min val with val at i
i = i+1

4/18/17 5Loop Invariants

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

Recall: Important Terminology

• assertion: true-false statement placed in a program to
assert that it is true at that point
 Can either be a comment, or an assert command

• invariant: assertion supposed to "always" be true
 If temporarily invalidated, must make it true again
 Example: class invariants and class methods

• loop invariant: assertion supposed to be true before
and after each iteration of the loop

• iteration of a loop: one execution of its body
4/18/17 Loop Invariants 6

Preconditions & Postconditions

• Precondition: assertion
placed before a segment

• Postcondition: assertion
placed after a segment

x = sum of 1..n-1
x = x + n
n = n + 1
x = sum of 1..n-1

precondition

postcondition

1 2 3 4 5 6 7 8

x contains the sum of these (6)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (10)

Relationship Between Two
If precondition is true, then
postcondition will be true

4/18/17 Loop Invariants 7

Solving a Problem

x = sum of 1..n

n = n + 1
x = sum of 1..n

precondition

postcondition

What statement do you
put here to make the
postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

4/18/17 Loop Invariants 8

Solving a Problem

x = sum of 1..n

n = n + 1
x = sum of 1..n

precondition

postcondition

What statement do you
put here to make the
postcondition true?

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

Remember the new value of n

4/18/17 Loop Invariants 9

Solving a Problem

x = sum of 1..n

n = n + 1
x = sum of 1..n

precondition

postcondition

A: x = x + 1
B: x = x + n
C: x = x + n+1
D: None of the above
E: I don’t know

4/18/17 Loop Invariants 10

1 2 3 4 5 6 7 8

x contains the sum of these (10)

n

n
1 2 3 4 5 6 7 8

x contains the sum of these (15)

n+1

Remember the new value of n

Invariants: Assertions That Do Not Change

x = 0; i = 2
while i <= 5:

x = x + i*i
i = i +1

x = sum of squares of 2..5

Invariant:
x = sum of squares of 2..i-1

in terms of the range of integers
that have been processed so far

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

• Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)

4/18/17 Loop Invariants 11

Invariants: Assertions That Do Not Change
• Loop Invariant: an assertion that is true before and

after each iteration (execution of repetend)
• Should help you understand the loop
• There are good invariants and bad invariants
• Bad:
 2 != 1

• Good:
 s[0…k] is sorted

4/18/17 Loop Invariants 12

True, but doesn’t help you understand the loop

Seems useful in order to conclude that
s is sorted.

Key Difference

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

4/18/17 Loop Invariants 13

Invariant:
True when loop terminates

Loop termination condition:
False when loop terminates

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ?

Integers that have
been processed:

Range 2..i-1:

4/18/17 Loop Invariants 14

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

4/18/17 Loop Invariants 15

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

4/18/17 Loop Invariants 16

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

4/18/17 Loop Invariants 17

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

4/18/17 Loop Invariants 18

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

, 5

2..5

4/18/17 Loop Invariants 19

Invariants: Assertions That Do Not Change

x = 0; i = 2
Inv: x = sum of squares of 2..i-1
while i <= 5:

x = x + i*i
i = i +1

Post: x = sum of squares of 2..5

i = 2

i <= 5

i = i +1

true

false

x = x + i*i

The loop processes the range 2..5

invariant

x 0

i ? 2

4

3

13

4

29

5

54

6

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

204/18/17 Loop Invariants

Integers that have
been processed:

Range 2..i-1: 2..1 (empty)

2

2..2

, 3

2..3

, 4

2..4

, 5

2..5

Designing Integer while-loops
Process integers in a..b
inv: integers in a..k-1 have been processed
k = a
while k <= b:

process integer k
k = k + 1

post: integers in a..b have been processed

Command to do something

Equivalent postcondition

trueinit cond

k= k +1;false

Process kinvariant

invariant
4/18/17 Loop Invariants 21

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

4/18/17 Loop Invariants 22

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Postcondition: range b..c has been processed
4/18/17 Loop Invariants 23

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

while k <= c:

k = k + 1
Postcondition: range b..c has been processed
4/18/17 Loop Invariants 24

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c

Invariant: range b..k-1 has been processed
while k <= c:

k = k + 1
Postcondition: range b..c has been processed
4/18/17 Loop Invariants 25

Designing Integer while-loops

1. Recognize that a range of integers b..c has to be processed
2. Write the command and equivalent postcondition
3. Write the basic part of the while-loop
4. Write loop invariant
5. Figure out any initialization
6. Implement the repetend (process k)

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b..k-1 has been processed
while k <= c:

Process k
k = k + 1

Postcondition: range b..c has been processed
4/18/17 Loop Invariants 26

Finding an Invariant

Make b True if n is prime, False otherwise

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 27

Finding an Invariant

Make b True if n is prime, False otherwise

while k < n:
Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant?

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 28

Finding an Invariant

Make b True if n is prime, False otherwise

invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 29

Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;

k = k +1
b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 30

Finding an Invariant

Make b True if n is prime, False otherwise
b = True
k = 2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
while k < n:

Process k;
if n % k == 0:

b = False
k = k +1

b is True if no int in 2..n-1 divides n, False otherwise

What is the invariant? 1 2 3 … k-1 k k+1 … n

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 31

Finding an Invariant
set x to # adjacent equal pairs in s

while k < len(s):
Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

k: next integer to process.
Which have been processed?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s

while k < len(s):
Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
Which have been processed? What is the invariant?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

A: 0..k
B: 1..k
C: 0..k–1
D: 1..k–1
E: I don’t know

A: x = no. adj. equal pairs in s[1..k]
B: x = no. adj. equal pairs in s[0..k]
C: x = no. adj. equal pairs in s[1..k–1]
D: x = no. adj. equal pairs in s[0..k–1]
E: I don’t know

k: next integer to process.
What indices have been considered? What is the invariant?

for s = 'ebeee', x = 2

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0

inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

k: next integer to process.
What is initialization for k?

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k

k = k + 1
x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?

Finding an Invariant
set x to # adjacent equal pairs in s
x = 0
k = 1
inv: x = # adjacent equal pairs in s[0..k-1]
while k < len(s):

Process k
x = x + 1 if (s[k-1] == s[k]) else 0
k = k + 1

x = # adjacent equal pairs in s[0..len(s)-1]

Command to do something

Equivalent postcondition

for s = 'ebeee', x = 2

A: k = 0
B: k = 1
C: k = –1
D: I don’t know

A: s[k] and s[k+1]
B: s[k-1] and s[k]
C: s[k-1] and s[k+1]
D: s[k] and s[n]
E: I don’t know

Which do we compare to “process” k?
k: next integer to process.
What is initialization for k?

Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 38

Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

4/18/17 Loop Invariants 39

Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above

4/18/17 Loop Invariants 40

Reason carefully about initialization

s is a list of ints; len(s) >= 1
Set c to largest element in s
c = ??
k = ??
inv:
while k < len(s):

Process k
k = k+1

c = largest int in s[0..len(s)–1]

1. What is the invariant?

2. How do we initialize c and k?

c is largest element in s[0..k–1]

Command to do something

Equivalent postcondition

An empty set of characters or integers has no maximum. Therefore,
be sure that 0..k–1 is not empty. You must start with k = 1.

A: k = 0; c = s[0]

B: k = 1; c = s[0]

C: k = 1; c = s[1]

D: k = 0; c = s[1]

E: None of the above

4/18/17 Loop Invariants 41

What is the Invariant?

?
0 n

pre: b sorted
0 n

post: b

i = 0
while i < n:

Find minimum val in b[i..]
Swap min val with val at i
i = i+1

4/18/17 42Loop Invariants

2 4 4 6 6 8 9 9 7 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

2 4 4 6 6 7 9 9 8 8 9
i n

sorted
0 i n

inv: b ?

Insertion Sort:

sorted, ≤ b[i..]
0 i n

inv: b ≥ b[0..i-1]
First segment always
contains smaller values

	Loop Invariants
	Announcements
	Loop Invariants: Eat your Vegetables!
	Recall: The while-loop
	Example: Sorting
	Recall: Important Terminology
	Preconditions & Postconditions
	Solving a Problem
	Solving a Problem
	Solving a Problem
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Key Difference
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Invariants: Assertions That Do Not Change
	Designing Integer while-loops
	Designing Integer while-loops
	Designing Integer while-loops
	Designing Integer while-loops
	Designing Integer while-loops
	Designing Integer while-loops
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Finding an Invariant
	Reason carefully about initialization
	Reason carefully about initialization
	Reason carefully about initialization
	Reason carefully about initialization
	What is the Invariant?

