4/17/2017

Announcements

Lab 11 is out

Prelim 2 conflicts due by midnight tonight

= Due in 2 weeks because of Prelim 2
« Review Prelim 2 announcements from previous

lecture

e A4 is due Thursday at midnight

 There will only be 5 assignments.
= Can look at webpage for redistributed weights

Recall: Important Terminology

* assertion: true-false statement placed in a program to
assert that it is true at that point
= Can either be a comment, or an assert command

invariant: assertion supposed to "always" be true
= If temporarily invalidated, must make it true again
= Example: class invariants and class methods

* loop invariant: assertion supposed to be true before
and after each iteration of the loop

iteration of a loop: one execution of its body

Preconditions & Postconditions

precondition

#x =sumof 1.n-1
X=X+n
n=n+1
#x= sumof 1.n-1

postcondition

e Precondition: assertion
placed before a segment

« Postcondition: assertion
placed after a segment

n
12345678
-T-

X contains the sum of these (6)

n
12345678

x contains the sum of these (10)

Solving a Problem

Relationship Between Two
If precondition is true, then
postcondition will be true

precondition

#x =sumof 1..n

What statement do you
_ _ put here to make the
n=n+1

“x= sumof 1.n postcondition true?

postcondition

A x=x+1
B:x=x+n
C:x=x + n+l

D: None of the above
E: I don’t know

Invariants: Assertions That Do Not Change

Invariants: Assertions That Do Not Change

e Loop Invariant: an assertion that is true before and
after each iteration (execution of repetend)

x=0;i=2

whilei<=5:
X=X+ i*

‘ i=i+l

x = sum of squares of 2..5

Invariant:
x = sum of squares of 2..i-1

in terms of the range of integers
that have been processed so far

i=2

#invariant

The loop processes the range 2..5

Xx=0;i=2 x (8 %18 2 54 |
#Irjv:>_<:sumofsquareson..l—l i ‘88 2 x & 6|
whilei<=5:
X =X+ i%i
=i+l =2
Post: x = sum of squares of 2..5 .
invariant

Integers that have
been processed: 2, 3, 4, 5

Range 2..i-1: 2.5

Invariant was always true just
before test of loop condition. So
it’s true when loop terminates

The loop processes the range 2.5

Designing Integer while-loops

4/17/2017

Process integers in a..b Command to do something
#inv: integers in a..k-1 have been processed
k=a
while k <= b:

process integer k

k=k+1 Equivalent postcondition
post: integers in a..b have been processed

invariant
il cond >—T185 | Process k

—— false
invariant

Designing Integer while-loops

Recognize that a range of integers b..c has to be processed
Write the command and equivalent postcondition

Write the basic part of the while-loop

Write loop invariant

Figure out any initialization

Implement the repetend (process k)

S e o

Process b..c
Initialize variables (if necessary) to make invariant true
Invariant: range b..k-1 has been processed
while k<=c:
Process k
k=k+1
Postcondition: range b..c has been processed

Finding an Invariant
Command to do something

Make b True if n is prime, False othéwise
b =True
k=2
invariant: b is True if no int in 2..k-1 divides n, False otherwise
whilek < n:

Process k;

if n% k==0:

b = False

k=k+1

#bis True if no int in 2..n-1 divides n, False otherwise

T Equivalent postcondition
What is the invariant? 123 ... klkk+l..n

Finding an Invariant

set x to # adjacent equal pairs in s Command to do something

for s ='ebeee’, x =2

while k < len(s):
Process k

k=k+1 5 "
x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

k: next integer to process.
Which have been processed?

A: 0.k

B: 1.k
C:0..k-1
D:1.k-1

E: I don’t know

Finding an Invariant

set x to # adjacent equal pairs in s
x=0

Command to do something

) . o fors ='ebeee’, x =2
#inv: x = # adjacent equal pairs in s[0..k-1]

while k < len(s):
Process k

k=k+1 . L
x = # adjacent equal pairs in s[0..len(s)-1] Equivalent postcondition

Reason carefully about initialization

k: next integer to process.
What is initialization for k?
A:k=0

B:k=1

C:k=-1

D: I don’t know

#sis astring; len(s) >=1 1. What is the invariant?
Set c to largest element in s

c=7?? Command to do something
k=77

How do we initialize ¢ and k?

k=0; c=s[0]
#inv: c is largest element in s[0..k-1]
while k < len(s): B: k=1; c=s[0]
Process k C: k=1; c=9[1]
k= kel) D: k=0; c=s[1]
c = largest char in s[0..len(s)-1]
Equivalent postcondition E: None of the above

