Announcements

A3 solutions will be released soon
A4 will be released by Wednesday morning
 Prelim 2

= Tuesday, April 25, 7:30-9:00pm

= Please go to the same room you went for Prelim 1
= Conflicts are being worked out; stay tuned
Lab 10 is out

4/10/2017

An Application

» Goal: Presentation program (e.g. PowerPoint)
e Problem: There are many types of content

= Examples: text box, rectangle, image, etc.

= Have to write code to display each one
« Solution: Use object oriented features

= Define class for every type of content

= Make sure each has a draw method:

for x in slide[i].contents:
| x.draw(window)

Defining a Subclass

class SlideContent(object): F?;’;ﬁ:%fas; .
...... Any object on a slide.™ e SlideContent
def __init__(self, x, y, w, h): ...
def draw_frame(self): ...
Subclass {
def select(self): ... Child class TextBox Image
Derived class

class TextBox(SlideContent):
def __init__(self, x, y, text): ... | Slid
def draw(self): ...

class Image(SlideContent):
""" An image.""
def __init__(self, x, y, image_file): ...
def draw(self): ...

Extending Classes

class <name>(<superclass>):

Class specification Class type to extend
initializer (__init_) (may need module name)

1

class variables

methods
So far, classes have
extended object

anything else

object and the Subclass Hierarchy

 Subclassing creates a
hierarchy of classes

= Each class has its own
super class or parent

= Until object at the “top”
 object has many features

= Default operators:
str,__repr__

Example
object
SlideContent
TextBox

InputTextBox

Name Resolution Revisited

 To look up attribute/method name
1. Look first in instance (object folder)
2. Then look in the class (folder)

* Subclasses add two more rules:
3. Look in the superclass
4. Repeat 3. until reach object

p.select()

E |p.text| |p.draw()|
p[id8 =" o it |

4/10/2017

A Simpler Example

class Employee(object):

"""Instance is salaried worker

INSTANCE ATTRIBUTES:
_name: full name [string]
_start: first year hired

_salary: yearly wage [float]

class Executive(Employee):
"""An Employee with a bonus
INSTANCE ATTRIBUTES:

[int = -1, -1 if unknown]

_bonus: annual bonus [float]

A Simpler Example

e Which __str__ do we use?
= Start at bottom class folder
= Find first method with name
= Use that definition
* New method definitions
override those of parent

Accessing the “Original” Method

* What if you want to use the
original version method?
= New method = original+more
= Do not want to repeat code
from the original version

« Call old method explicitly
= Use method as a function
= Pass object as first argument

* Example:
Employee.__str__(self)

class Employee(object):
""An Employee with a salary™"

def __str__(self):
return (self._name +
', year ' + str(self._start) +
', salary ' + str(self._salary))

class Executive(Employee):
"""An Employee with a bonus.""
def __str__(self):
return (Employee.__str__(self)
+', bonus ' + str(self._bonus)

Primary Application: Initializers

class Employee(object):

def __init__(self,n,d,s=50000.0):
self._name =n
self._start=d
self._salary =s

class Executive(Employee):

def __init__(self,n,d,b=0.0):
Employee.__init__(self,n,d)
self._bonus =b

Object Attributes can be Inherited

class Employee(object):

def __init__(self,n,d,s=50000.0):
self._name =n

self._start=d
self._salary=s

class Executive(Employee):

def __init__(self,n,d,b=0.0):
‘ Employee.__init__(self,n,d)
self._bonus =b

id4

Executive

Created in
Employee
initializer

Created in
Executive
initializer

Also Works With Class Variables

Class Variable: Assigned outside of any method definition

class Employee(object):
""Instance is salaried worker
Class Attribute
STD_SALARY = 50000.0

class Executive(Employee): 200000

"""An Employee with a bonus."™
Class Attribute
STD_BONUS = 10000.0

