CS 1110:
Introduction to Computing Using Python

Lecture 18

Using Classes Effectively

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

« A3 due tonight at 11:59pm.

* Spring break next week:
= No office hours
= No consulting hours
= Limited piazza

3/30/17 Using Classes Effectively

Making Arguments Optional

e We can assign default values to class Point3(object):

INnit.___ arguments

= Write as assignments to
parameters in definition

= Parameters with default values
are optional

« Examples:

= p = Point3() # (0,0,0)
p = Point3(1,2,3) #(1,2,3)
p = Point3(1,2) # (1,2,0)
P = Point3(y=3) # (0,3,0)
p = Point3(1,z=2) # (1,0,2)

Instances are points in 3d space
X: x coord [float]
y: y coord [float]
z: z coord [float]

def _init_ (self,x=0,y=0,z=0):
""Initializer: makes a new Point
Precondition: x,y,z are numbers
self.x = x

self.y =y

self.z=z

3/30/17 Using Classes Effectively 3

Making Arguments Optional

e We can assign default values to class Point3(object):

INnit.___ arguments

Instances are points in 3d space

= Write as assignments to X x coord [float
parameters in definition y:'y coord [float]

= Parameters with default values z: z coord [float] ™™
are optional def __init__ (self,x=0,y=0,z=0):

 Examples: | Initializer: makes a new Point

3/30/17

p = Point30———##(0.0 E) Precondition: x,y,z are numbers""
p = Pointd__ ASsigns inorder) self.x = x

P = Point3(1,2) | Use parameter name Eelf-y =Yy
D = Point3(y=3)_When out of Olrder elf.z =z
p= P()int?-;,(]_,2:2}\/L Can mix two }

approaches
Using Classes Effectively 4

Making Arguments Optional

e We can assign default values to class Point3(object):

INnit__ arguments

Instances are points in 3d space

= Write as assignments to X x coord [float
parameters in definition y:'y coord [float]

= Parameters with default values z: z coord [float] ™™
are optional def _init_ (self,x=0,y=0,z=0):

« Examples: | ww Initializer: makes a new Point

3/30/17

p = Point30 # (00 i) Precondition: x,y,z are numbers""
p = Point Assigns In or‘der) .

p = Point3(1,2) [Use parameter name pelf.
p = Point3(y=3)~ When out of order
p= Point3(1,zz2\#L Can mix two }

approaches
Using Classes Effectively 5

On Tuesday, we learned how to make:

 Class definitions

 Class specifications

 Class variables

e Methods

 Attributes (using self)

e A constructor with init

3/30/17 Using Classes Effectively

» Class definitions %
 Class specifications

 Class variables @
e Methods
 Attributes (using self)
e A constructor with init

3/30/17 Using Classes Effectively

Designing Types

* Type: set of values and the operations on them
= Int: (set: integers; ops: +, —, *, /, ...)
= Time (set: times of day; ops: time span, before/after, ...)

= Rectangle (set: all axis-aligned rectangles in 2D;
ops: contains, intersect, ...)

* To define a class, think of a real type you want to make

3/30/17 Using Classes Effectively

Making a Class into a Type

1. Think about what values you want in the set
= What are the attributes? What values can they have?

2. Think about what operations you want
= This often influences the previous question

e To make (1) precise: write a class invariant
= Statement we promise to keep true after every method call

* To make (2) precise: write method specifications
= Statement of what method does/what it expects (preconditions)

* Write your code to make these statements true!

3/30/17 Using Classes Effectively 9

Planning out a Class: Time

e What attributes?

* What invariants?) i
» \What methods? { 07010 J
* What constructor? { LUy

(24-hour clock)

3/30/17 Using Classes Effectively 10

Planning out a Class

class Time(object):

""Instances represent times of day. Class Invariant
Instance Attributes: o States what attributes are present
hour: hour of day [intin 0..23] and what values they can have.
min: minute of hour [int in 0..59] A statement that will always be
true of any Time instance.

def _init__ (self, hour, min):

"""The time hour:min.
Pre: hour in 0..23; min in 0..59™"

def increment(self, hours, mins): Method Specification

"""Move this time <hours> hours S hat th o
and <mins> minutes into the future. } tates what the method does.

Pre: hours is int >= 0; mins in 0..59"] | Gives preconditions stating what
IS assumed true of the arguments.

def isPM(self):

yaony Rewurns: this time is noon, of 1atek: ivery 11

Implementing a Class

 All that remains is to fill in the methods. (All?!)

* When implementing methods:
1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

 Later, when using the class:

= When calling methods, ensure preconditions are true
= |f attributes are altered, ensure class invariant iIs true

3/30/17 Using Classes Effectively 14

Implementing an Initializer

def __init__ (self, hour, min):

""" The time hour:min.
Pre: hour in 0..23; min in 0..59"™

~

Instance variables:
hour: hour of day [intin 0..23]
min: minute of hour [int in 0..59

3/30/17

<€— This is true to start

You put code here

This should be true
at the end

sing Classes Effectively 15

Implementing an Initializer

def __init__(self, hour, min):
"™ The time hour:min.

Pre: hour in 0..23; min in 0..59""" | &= This is true to start

A
Time.hour = hour
Time.min = min

B:
hour = hour
min = min

C:
self.hour = hour
self.min = min

T~

3/30/17

Instance variables:
hour: hour of day
min: minute of hour [int in 0..59

This should be true /
at the end

[intin 0..23]

—

D:
self.hour = Time.hour
self.min = Time.min

sing Classes Effectively 16

Implementing a Method

> I

Instance variables:
hour: hour of day [intin 0..23

min: minute of hour [int in 0..59] This is true to start

What we are supposed
to accomplish

>

def increment(self, hours, mins):
""" Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59""

This 1s also true to start

self.min = self.min + mins ’)

self.hour = self.hour + hours You put code here

Instance variables:
hour: hour of day [intin 0..23
min: minute of hour [int in 0..59]

Using Classes E

This should be true
ey attheend 17

Implementing a Method

> I

Instance variables:
hour: hour of day [intin 0..23

min: minute of hour [int in 0..59] This is true to start

What we are supposed
to accomplish

>

def increment(self, hours, mins):
""" Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59""

This i1s also true to start

self.min = self.min + mins
self.hour = (self.hour + hours + self.min / 60) You put code here
self.min = self.min % 60

self.hour = self.hour % 24

Instance variables:
hour: hour of day [intin 0..23
min: minute of hour [int in 0..59]

Using

A This should be true
oy attheend 18

Classes Effee

Example: class Time

3/30/17

Using Classes Effectively

19

Special Methods In Python

e __init__ for initializer class Point3(object):

. str__ for str()

__repr__forbackquotes e init_ (selfx=0,y=0,2=0):
Start/end with 2 underscores | "™
= This is standard in Python

= Used in all special methods def _str_ (self,q):

= Also for special attributes

For a complete list, see

http://docs.python.org/refere | def __repr__(self,q):
nce/datamodel.html | "

3/30/17 Using Classes Effectively 20

Example: Converting Values to Strings

str() Function Backquotes

» Usage: str() o Usage:)

= Evaluates the expression = Evaluates the expression

= Converts it into a string = Converts it into a string
e How does it convert? « How does it convert?

= str(2) —» '2' =2 "2

= str(True) — 'True' = True — 'True’

= str('True') — True' = "True" — ""True"™

= str(Point3()) — = Point3() —

'(0.0,0.0,0.0)' "<class 'Point3'>

3/30/17 Using Classes Eﬂectively(O'O’O'O’O'O) 21

Example: Converting Values to Strings

str() Function Backguotes
(
 Usage: str() o Backquotes are
= Evaluates the expression for unambigious
= Converts It into a string N representati()n y
e How does it con - How does It cop——"
T IS value® . T\’ﬁis el
= str(True) — "Tr = True —'
= str('True') — True' = "True" — ""True"™
= str(Point3()) — = Point3() —
'(0.0,0.0,0.0)' "<class 'Point3'>

3/30/17 Using Classes Effectively(O'O’O'O’O'O) 22

What Does str() Do On Objects?

* Does NOT display contents class Point3(object):

>>>p = Point3(1,2,3) Instances are points in 3d space™"
>>> str(p) def _ str_ (self):
<Point3 objectat | | Returns: string with contents™"
0x1007a90> return '('+self.x + ' +
 Must add a special method selfy + ', +
= str__ forstr() self.z +")’
= repr__ for backquotes def repr (self): C?;;/Sez atlkr]nee
 Could get away with justone | | Returns: unam g
= Backquotes require __repr__ return str(self.__class_)+
= str() canuse _ repr str(self)

(if __str__is not there) repr__ using
3/30/17 Using Classes Effectively __str__as helper

Planning out a Class: Fraction

3/30/17

Using Classes Effectively

24

Planning out a Class: Fraction

 What attributes? class Fraction(object):

. Whatinvariants? Instance is a fraction n/d
» What methods? Attributes:

. What constructor? numerator:. top [Int]

denominator: bottom [int > O]

def _init_ (self,n=0,d=1):

self.numerator = n
self.denominator = d

3/30/17 Using Classes Effectively 26

Example: class Fraction

3/30/17

Using Classes Effectively

27

Problem: Doing Math is Unwieldy

What We Want What We Get
1 1 1\ 5 >>> p = Fraction(1,2)
2 t 3 t 2] "2 >>> (= Fraction(1,3)
>>> 1 = Fraction(1,4)
g A >>> s = Fraction(5,4
Why not use the s = Fraction(5,4)

=

standard Python
math operations?

J

3/30/17

>>>
(p.add(g.add(r))).mult(s)

Pain!

Using Classes Effectively

28

Operator Overloading: Addition

class Fraction(object): >>>p = Fraction(l,Z)
""" Instance attributes: :
>>> (0 =
numerator: top [int] q = Fraction(3,4)
denominator: bottom [int > 0]"" >>>1 = p+(q
def add__ (self,q): Python

""" Returns: Sum of self, q et
Makes a new Fraction
Precondition: g a Fraction™"

assert type(q) == Fraction >>>r=p. add_ (q)
bot = self.denominator*g.denominator

top = (self.numerator*q.denominator+ Operator overloading uSes

self.dgnominator*q.numerator) method in object on left.
return Fraction(top,bot)

3/30/17 Using Classes Effectively 29

Operator Overloading: Multiplication

class Fraction(object):
""Instance attributes:
numerator: top [int]

def __mul__(self,g):
""Returns: Product of self,

modify contents of self or g
Precondition: g a Fraction
assert type(q) == Fraction

return Fraction(top,bot)

3/30/17

top = self.numerator*g.numerator
bot = self.denominator*q.denominator method In object on left.

>>> p = Fraction(1,2)
>>> (= Fraction(3,4)

denominator: bottom [int > 0" >>>T = p*Q

Python

q converts to
Makes a new Fraction; does not

>>>r=p. _mul_(q)

Operator overloading uses

Using Classes Effectively

30

Data Encapsulation

class Fraction(object):

""Instance attributes:
__numerator: top [int]
_denominator: bottom [int > O]

Getter

def getDenominator(self): Naming Convention
""Returns: numerator attribute"" g

return self._denominator <« | The underscore means
“should not access the

attribute directly.”

Setter

i

def setDenominator(self, d):
""Alters denomenator to be d
Pre: dis an int > 0™"
assert type(d) == int } Precondition is same
assert0<d as attribute invariant.
self._denominator = d

3/30/17 Using Classes Effectively 32

Enforcing Invariants

class Fraction(object): e ldea: Restrict direct access
""Instance attributes: = Only access via methods
numerator: [top [Int] = Use asserts to enforce them
denominator:|bottom [int > O]| Examples:

def getNumerator(self):

return self.numerator

e These are just comments! def setNumerator(self,value):
« Do not enforce anything. |

assert type(value) == int
self.numerator = value

3/30/17 Using Classes Effectively 33

	Using Classes Effectively
	Announcements
	Making Arguments Optional
	Making Arguments Optional
	Making Arguments Optional
	On Tuesday, we learned how to make:
	Today
	Designing Types
	Making a Class into a Type
	Planning out a Class: Time
	Planning out a Class
	Implementing a Class
	Implementing an Initializer
	Implementing an Initializer
	Implementing a Method
	Implementing a Method
	Example: class Time
	Special Methods in Python
	Example: Converting Values to Strings
	Example: Converting Values to Strings
	What Does str() Do On Objects?
	Planning out a Class: Fraction
	Slide Number 25
	Planning out a Class: Fraction
	Example: class Fraction
	Problem: Doing Math is Unwieldy
	Operator Overloading: Addition
	Operator Overloading: Multiplication
	Data Encapsulation
	Enforcing Invariants

