
Using Classes Effectively

Lecture 18

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

• A3 due tonight at 11:59pm.
• Spring break next week:
 No office hours
 No consulting hours
 Limited piazza

3/30/17 Using Classes Effectively 2

Making Arguments Optional

• We can assign default values to
__init__ arguments
 Write as assignments to

parameters in definition
 Parameters with default values

are optional
• Examples:
 p = Point3() # (0,0,0)
 p = Point3(1,2,3) # (1,2,3)
 p = Point3(1,2) # (1,2,0)
 p = Point3(y=3) # (0,3,0)
 p = Point3(1,z=2) # (1,0,2)

class Point3(object):
"""Instances are points in 3d space

x: x coord [float]
y: y coord [float]
z: z coord [float] """

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes a new Point
Precondition: x,y,z are numbers"""
self.x = x
self.y = y
self.z = z

…

3/30/17 3Using Classes Effectively

Making Arguments Optional

• We can assign default values to
__init__ arguments
 Write as assignments to

parameters in definition
 Parameters with default values

are optional
• Examples:
 p = Point3() # (0,0,0)
 p = Point3(1,2,3) # (1,2,3)
 p = Point3(1,2) # (1,2,0)
 p = Point3(y=3) # (0,3,0)
 p = Point3(1,z=2) # (1,0,2)

class Point3(object):
"""Instances are points in 3d space

x: x coord [float]
y: y coord [float]
z: z coord [float] """

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes a new Point
Precondition: x,y,z are numbers"""
self.x = x
self.y = y
self.z = z

…

3/30/17 4

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Using Classes Effectively

Making Arguments Optional

• We can assign default values to
__init__ arguments
 Write as assignments to

parameters in definition
 Parameters with default values

are optional
• Examples:
 p = Point3() # (0,0,0)
 p = Point3(1,2,3) # (1,2,3)
 p = Point3(1,2) # (1,2,0)
 p = Point3(y=3) # (0,3,0)
 p = Point3(1,z=2) # (1,0,2)

class Point3(object):
"""Instances are points in 3d space

x: x coord [float]
y: y coord [float]
z: z coord [float] """

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes a new Point
Precondition: x,y,z are numbers"""
self.x = x
self.y = y
self.z = z

…

3/30/17 5

Assigns in order

Use parameter name
when out of order

Can mix two
approaches

Using Classes Effectively

On Tuesday, we learned how to make:

• Class definitions
• Class specifications
• Class variables
• Methods
• Attributes (using self)
• A constructor with __init__

3/30/17 Using Classes Effectively 6

Today

• Class definitions
• Class specifications
• Class variables
• Methods
• Attributes (using self)
• A constructor with __init__

3/30/17 Using Classes Effectively 7

• Type: set of values and the operations on them
 int: (set: integers; ops: +, –, *, /, …)
 Time (set: times of day; ops: time span, before/after, …)
 Rectangle (set: all axis-aligned rectangles in 2D;

ops: contains, intersect, …)

• To define a class, think of a real type you want to make

Designing Types

3/30/17 Using Classes Effectively 8

Making a Class into a Type

1. Think about what values you want in the set
 What are the attributes? What values can they have?

2. Think about what operations you want
 This often influences the previous question

• To make (1) precise: write a class invariant
 Statement we promise to keep true after every method call

• To make (2) precise: write method specifications
 Statement of what method does/what it expects (preconditions)

• Write your code to make these statements true!

3/30/17 Using Classes Effectively 9

Planning out a Class: Time

3/30/17 Using Classes Effectively 10

• What attributes?
• What invariants?
• What methods?
• What constructor?

(24-hour clock)

Planning out a Class
class Time(object):

"""Instances represent times of day.
Instance Attributes:

hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]"""

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours is int >= 0; mins in 0..59"""

def isPM(self):
"""Returns: this time is noon or later."""

Class Invariant
States what attributes are present
and what values they can have.
A statement that will always be
true of any Time instance.

Method Specification
States what the method does.
Gives preconditions stating what
is assumed true of the arguments.

3/30/17 Using Classes Effectively 11

Implementing a Class

• All that remains is to fill in the methods. (All?!)
• When implementing methods:

1. Assume preconditions are true
2. Assume class invariant is true to start
3. Ensure method specification is fulfilled
4. Ensure class invariant is true when done

• Later, when using the class:
 When calling methods, ensure preconditions are true
 If attributes are altered, ensure class invariant is true

3/30/17 Using Classes Effectively 14

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59"""

You put code here

This is true to start

This should be true
at the end

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

3/30/17 Using Classes Effectively 15

Implementing an Initializer

def __init__(self, hour, min):
"""The time hour:min.
Pre: hour in 0..23; min in 0..59""" This is true to start

This should be true
at the end

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

3/30/17 Using Classes Effectively 16

A:
Time.hour = hour
Time.min = min

B:
hour = hour
min = min

C:
self.hour = hour
self.min = min

D:
self.hour = Time.hour
self.min = Time.min

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = self.hour + hours

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

?

3/30/17 Using Classes Effectively 17

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

Implementing a Method

def increment(self, hours, mins):
"""Move this time <hours> hours
and <mins> minutes into the future.
Pre: hours [int] >= 0; mins in 0..59"""

You put code here

This is also true to start

This should be true
at the end

self.min = self.min + mins
self.hour = (self.hour + hours + self.min / 60)
self.min = self.min % 60
self.hour = self.hour % 24

This is true to start
What we are supposed
to accomplish

Instance variables:
hour: hour of day [int in 0..23]
min: minute of hour [int in 0..59]

3/30/17 Using Classes Effectively 18

Example: class Time

3/30/17 Using Classes Effectively 19

Special Methods in Python

• __init__ for initializer
• __str__ for str()
• __repr__ for backquotes
• Start/end with 2 underscores
 This is standard in Python
 Used in all special methods
 Also for special attributes

• For a complete list, see
http://docs.python.org/refere
nce/datamodel.html

class Point3(object):
"""Instances are points in 3D space"""
…

def __init__(self,x=0,y=0,z=0):
"""Initializer: makes new Point3"""
…

def __str__(self,q):
"""Returns: string with contents"""
…

def __repr__(self,q):
"""Returns: unambiguous string"""
…

3/30/17 Using Classes Effectively 20

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
 Evaluates the expression
 Converts it into a string

• How does it convert?
 str(2) → '2'
 str(True) → 'True'
 str('True') → 'True'
 str(Point3()) →

'(0.0,0.0,0.0)'

Backquotes

• Usage: `<expression>`
 Evaluates the expression
 Converts it into a string

• How does it convert?
 `2` → '2'
 `True` → 'True'
 `'True'` → "'True'"
 `Point3()` →

"<class 'Point3'>
(0.0,0.0,0.0)"3/30/17 Using Classes Effectively 21

Example: Converting Values to Strings

str() Function

• Usage: str(<expression>)
 Evaluates the expression
 Converts it into a string

• How does it convert?
 str(2) → '2'
 str(True) → 'True'
 str('True') → 'True'
 str(Point3()) →

'(0.0,0.0,0.0)'

Backquotes

• Usage: `<expression>`
 Evaluates the expression
 Converts it into a string

• How does it convert?
 `2` → '2'
 `True` → 'True'
 `'True'` → "'True'"
 `Point3()` →

"<class 'Point3'>
(0.0,0.0,0.0)"3/30/17 Using Classes Effectively 22

What type is
this value?

The value’s
type is clear

Backquotes are
for unambigious
representation

What Does str() Do On Objects?

• Does NOT display contents
>>> p = Point3(1,2,3)
>>> str(p)
'<Point3 object at
0x1007a90>'

• Must add a special method
 __str__ for str()
 __repr__ for backquotes

• Could get away with just one
 Backquotes require __repr__
 str() can use __repr__

(if __str__ is not there)

class Point3(object):
"""Instances are points in 3d space"""
…
def __str__(self):

"""Returns: string with contents"""
return '('+self.x + ',' +

self.y + ',' +
self.z + ')'

def __repr__(self):
"""Returns: unambiguous string"""
return str(self.__class__)+

str(self)

Gives the
class name

3/30/17 Using Classes Effectively 23
__repr__ using

__str__ as helper

Planning out a Class: Fraction

3/30/17 Using Classes Effectively 24

Planning out a Class: Fraction

• What attributes?
• What invariants?
• What methods?
• What constructor?

class Fraction(object):
"""Instance is a fraction n/d

Attributes:
numerator: top [int]
denominator: bottom [int > 0]

"""

def __init__(self,n=0,d=1):
"""Init: makes a Fraction"""
self.numerator = n
self.denominator = d

3/30/17 Using Classes Effectively 26

Example: class Fraction

3/30/17 Using Classes Effectively 27

Problem: Doing Math is Unwieldy

What We Want

1
2

+
1
3

+
1
4

∗
5
4

What We Get

>>> p = Fraction(1,2)
>>> q = Fraction(1,3)
>>> r = Fraction(1,4)
>>> s = Fraction(5,4)
>>>
(p.add(q.add(r))).mult(s)

3/30/17 Using Classes Effectively 28

Pain!

Why not use the
standard Python
math operations?

Operator Overloading: Addition
class Fraction(object):

"""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

def __add__(self,q):
"""Returns: Sum of self, q
Makes a new Fraction
Precondition: q a Fraction"""
assert type(q) == Fraction
bot = self.denominator*q.denominator
top = (self.numerator*q.denominator+

self.denominator*q.numerator)
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p+q

>>> r = p.__add__(q)

Python
converts to

Operator overloading uses
method in object on left.

3/30/17 Using Classes Effectively 29

Operator Overloading: Multiplication
class Fraction(object):

"""Instance attributes:
numerator: top [int]
denominator: bottom [int > 0]""”

def __mul__(self,q):
"""Returns: Product of self, q
Makes a new Fraction; does not
modify contents of self or q
Precondition: q a Fraction"""
assert type(q) == Fraction
top = self.numerator*q.numerator
bot = self.denominator*q.denominator
return Fraction(top,bot)

>>> p = Fraction(1,2)
>>> q = Fraction(3,4)
>>> r = p*q

>>> r = p.__mul__(q)

Python
converts to

Operator overloading uses
method in object on left.

3/30/17 Using Classes Effectively 30

Data Encapsulation

class Fraction(object):
"""Instance attributes:

_numerator: top [int]
_denominator: bottom [int > 0]"""

def getDenominator(self):
"""Returns: numerator attribute"""
return self._denominator

def setDenominator(self, d):
"""Alters denomenator to be d
Pre: d is an int > 0"""
assert type(d) == int
assert 0 < d
self._denominator = d

Getter

Setter

Precondition is same
as attribute invariant.

Naming Convention
The underscore means
“should not access the

attribute directly.”

3/30/17 Using Classes Effectively 32

Enforcing Invariants

class Fraction(object):
"""Instance attributes:

numerator: top [int]
denominator: bottom [int > 0]

"""

• These are just comments!
• Do not enforce anything.

• Idea: Restrict direct access
 Only access via methods
 Use asserts to enforce them

• Examples:
def getNumerator(self):

"""Returns: numerator"""
return self.numerator

def setNumerator(self,value):
"""Sets numerator to

value"""
assert type(value) == int
self.numerator = value

3/30/17 Using Classes Effectively 33

Invariants:
Properties that

are always true.

	Using Classes Effectively
	Announcements
	Making Arguments Optional
	Making Arguments Optional
	Making Arguments Optional
	On Tuesday, we learned how to make:
	Today
	Designing Types
	Making a Class into a Type
	Planning out a Class: Time
	Planning out a Class
	Implementing a Class
	Implementing an Initializer
	Implementing an Initializer
	Implementing a Method
	Implementing a Method
	Example: class Time
	Special Methods in Python
	Example: Converting Values to Strings
	Example: Converting Values to Strings
	What Does str() Do On Objects?
	Planning out a Class: Fraction
	Slide Number 25
	Planning out a Class: Fraction
	Example: class Fraction
	Problem: Doing Math is Unwieldy
	Operator Overloading: Addition
	Operator Overloading: Multiplication
	Data Encapsulation
	Enforcing Invariants

