CS 1110:
Introduction to Computing Using Python

Lecture 17

Classes

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

Lab 9 is out. Due in two weeks because of break.
Prelim 1 solutions posted on Exams page.
Regrade request instructions have been emailed.
Makeup exams are in homework handback room.
A3 due Thursday.

No A4 until after break!

Announcements

« For more solved recursion examples, see the
demos:

= http://www.cs.cornell.edu/courses/cs1110/2014sp/lectures/index.php

= https://www.cs.cornell.edu/courses/cs1110/2016fa/lectures/10-18-
16/modules/morefun.py

* For more daily practice: download the demo
code we post for each lecture; remove the
contents, and try to reproduce what we did In
class.

http://www.cs.cornell.edu/courses/cs1110/2014sp/lectures/index.php
https://www.cs.cornell.edu/courses/cs1110/2016fa/lectures/10-18-16/modules/morefun.py

Recall: Objects as Data in Folders

* An object is like a manila folder

e |t contains other variables
= VVariables are called attributes

= Can change values of an attribute
(with assignment statements)

e |t has a “tab” that identifies It

= Unique number assigned by Python
= Fixed for lifetime of the object

10/22/15 Classes

Unique tab
identifier

/

1d2

Recall: Classes are Types for Objects

* Values must have atype < Classes are how we add
= An object is a value new types to Python
= QObject type is a class

id2
Point3
20 \ Classes

X ' class name . Point3
« RGB

y 3.0 e Turtle
e Window

7 5.0

10/22/15 Classes

Classes Have Folders Too

Object Folders

Class Folders

« Separate for each instance

Point3

1d2

X 2.0
y | 3.0
Z 5.0

10/22/15

1d3

Point3

5.0

7.2

-0.5

Classes

Data common to all instances

Name Resolution for Objects

* (0bject).(name) means p [103 q | 104
= Go the folder for object 1d3 d4
_ _ Point3 Point3
= Find attribute/method name . « [74
= [f missing, check class folder y [2.0 y [00
= |f not in either, raise error 2 | 30 7 | 00

 What is in the class folder?

= Data common to all objects

~—
77

10/22/15 Classes 7

= First must understand the
class definition

The Class Definition

Goes inside a
module, just
like a function

10/22/15

class <class-name>(object):

Class specification
<function definitions>

<assignment statements>

<any other statements also allowed>

class Example(object):
"""The simplest possible class.
pass

Classes

| definition.

Goes inside a

The Class Definition module, just

like a function

keyword class 9 definition. y
Beginning of a

class definition [as s <class-name>(object):

SpeCification \\‘> i o o - i
ey oons [l Class specification D=

el el et _ <function definitions>

to define |7
e InIE <assignment statements>
to define <any other statements also allowed>

class variables

class Example(object):
"""The simplest possible class.
pass

Python creates
after reading the
class definition

Important!

YES NO
class Point(object): class Point:
""" Instances are 3D points ""'Instances are 3D points
X [float]: x coord X [float]: x coord
y [float]: y coord y [float]: y coord
Z [float]: z coord™™" Z [float]: z coord™™"

3.0-Style Classes “Classic” Classes
Well-designed NoO reason to use these

Recall: Constructors

* Function to create new instances - el id2
|

= Function name == class name

Example

= Created for you automatically

 Calling the constructor:

= Makes a new object folder :
o _ Will come
= Initializes attributes back to this

= Returns the i1d of the folder

« By default, takes no arguments

= e = Example()

10/22/15 Classes 11

Instances and Attributes

e Can add object attributes

_ _ _ el 1d2
= <object>.<att> = <expression> 1d2
= Example: e.b =42 Example
« Can also add class variables b | a2

= <class>.<att> = <expression>
= Example: Example.a = 29

 Can access class attributes through object
= Example: print e.a
= But assigning it creates object attribute
= Example: e.a =10

* Rule: check object first, then class

10/22/15 Classes 12

Instances and Attributes

e Can add object attributes ;
_ el 1d2
. = 102
= Example: e.b =42 Not how Example
. lly d
. Can also add class varidores——— b [a0

= Example: Example.a = 29
 Can access class attributes through object
= Example: print e.a

= But assigning it creates object attribute
= Example: e.a =10

* Rule: check object first, then class

10/22/15 Classes 13

What gets Printed?

import flower

f = flower.Flower()
g = flower.Flower()

f.robustness = 3
flower.Flower.robustness = 4
flower.Flower.utility = 8
g.utility =9

print f.robustness
print g.robustness
print f.utility
print g.utility

10/22/15 Classes

o 00~ WP

© oA~ AT

© oo~ wO

oo r~P~Q

14

Ilnvariants

 Properties of an attribute that must be true

* \Works like a precondition.
= |f Invariant satisfied, object works properly
= |f not satisfied, object is “corrupted”

« Examples:

= Point3 class: all attributes must be floats
= RGB class: all attributes must be ints in 0..255

» Purpose of the class specification

10/22/15 Classes

15

The Class Specification

class Worker(object):
""An Instance Is a worker in an organization.

Instance has basic worker info, but no salary information.

ATTRIBUTES:
Iname: Worker’s last name. |[str]
ssn: Social security no. [intin 0..999999999]
boss: Worker's boss. [Worker, or None if no boss]

10/22/15 Classes 16

The Class Specification

_ Short
class Worker(object): summary
""An instance Is a worker in an organization. 2 More J

detail

[Attrﬂance has basic worker info, but no salary information.
list

ATTRIBUTES: | Description |

) Invarian
Iname: Worker’s last name. [str] %

ssn: Social security no. [intin 0..999999999
boss: Worker's boss. [Worker, or None if no boss]

Attribute
Name
10/22/15 Classes 17

Recall: Objects can have Methods

» Method: function tied to object ~ p | 1d3 q | 104
= Function call: id3 ida
<function-name>(<arguments>) Point3 Point3
= Method call: 50 « [74
<object-variable>.<function-call> ' :
Example: p.distanceTo(Qq) A 20 y 129
PIE-P- : 3.0 z | 0.0

* For most Python objects

= Attributes are in object folder

= Methods are in class folder

10/22/15 Classes 18

Function Definition

* Goal: implement p.distanceTo(q)

Could try to make a function like we have been:
def distanceTo(Q):

“Problem: no way to access p |

10/22/15 Classes

19

Method Definitions

 Looks like a function def class Point3(object):
= Butindented inside class | Instances are points in 3d space

_ X: X coord [float]
- The first parameter y: y coord [float]
Is always called self z: 7 coord [float] ™"
* |In a method call: def distanceTo(self,q):

""" Returns: dist from self to g

Precondition: q a Point3™"

assert type(q) == Point3

sgrdst = ((self.x-g.x)**2 +
(self.y-q.y)**2 +

« Example: a.distanceTo(b) (self.z-q.2)**2)

return math.sqrt(sqgrdst)

10/22/15 Classes 20

= Parentheses have one fewer
argument than parameters

= The object in front is passed to
parameter self

Method Calls

« Example: a.distanceTo(b) class Point3(object):
: 1 | "™ Instances are points in 3d space
a 1d2 b 1d3

X: x coord [float]
id?2 id3 y: y coord [float]
Point3 Point3 z: z coord [float]
def distanceTo(self,q):

""" Returns: dist from self to g

y 2.0 y 3.0

Precondition: g a Point3
assert type(q) == Point3
sgrdst = ((self.x-g.x)**2 +
(self.y-q.y)**2 +
(self.z-q.2)**2)
return math.sqrt(sqgrdst)

10/22/15 Classes 21

Method Calls

« Example: a.distanceTo(b) class Point3(object):
: 1 | "™ Instances are points in 3d space
a 1d2 b 1d3

X: X coord [float]
id?2 id3 y: y coord [float]
Point3 Point3 z: z coord [float]
def distanceTo(self,q):

y [20 y [30 |
""" Returns: dist from self to g
I 7 1.0 it '
Precondition: q a Point3™"
assert type(q) == Point3
distanceTo 1 e

sgrdst = ((self.x-g.x)**2 +

self id2 (self.y-q.y)**2 +
(self.z-q.z)**2)

return math.sqrt(sqgrdst)

q 1d3

10/22/15 Classes 22

Don’t forget self!

0 = Point3(1.0, 2.0, 3.0) def distanceTo(other):

g = Point3(4.0, 5.0, 6.0) sgrdst = ((x-other.x)**2 +

print p.distanceTo(q) (y-other.y)**2 +
(z-other.z)**2)

return math.sqgrt(sqgrdst)

2977

TypeError: distanceTo() takes exactly 1 argument (2 given)

<var>.<method name> always passes <var> as first argument

10/22/15 Classes 23

Don’t forget self!

0 = Point3(1.0, 2.0, 3.0) def distanceTo(self, other):

g = Point3(4.0, 5.0, 6.0) sgrdst = ((x-other.x)**2 +
print p.distanceTo(q) (y-other.y)**2 +

z-other.z)**2)
turn math.sqgrt(sqrdst)

Methods can’t access object attributes without self.

N

NameError: global name 'X' is not defined

10/22/15 Classes 24

Initializing the Attributes of an Object (Folder)

* Creating a new Worker is a multi-step process:
= w = Worker() < Instance is empty
= w.Iname = 'Andersen’

« Want to use something like

w = Worker('Andersen’, 1234, None)
= Create a new Worker and assign attributes
* [name to 'Andersen’, ssn to 1234, and boss to None

e Need a custom constructor

10/22/15 Classes 25

Special Method: _ init_

w = Worker('Andersen’, 1234, None)

def _ init_ (self, n, s, b):
""" Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s anint in
range 0..999999999, and b either
a Worker or None.

self.lname =n

self.ssn =s

self.boss =Db

10/22/15 Classes

[Called by the constructor]

1d8

Iname
ssn

boss

Worker

'Erik’

1234

None

26

Special Method: _ init_

don’t forget self

two underscores
W {\IVUI RCI{ ATIUCTIS el M"ng)
\

de it_(saf, n, s, b):
""Initializer: creates a Worker

Has last name n, SSN s, and boss b

Precondition: n a string, s an int in
range 0..999999999, and b either
a Worker or None.

self.lname =n

self.ssn =s

self.boss =Db

10/22/15

— use self to assign attributes sses

[Called by the constructor]

1d8

Iname
ssn

boss

Worker

'Erik’

1234

None

27

Evaluating a Constructor Expression

Worker('Erik', 1234, None)

Creates a new object (folder)
of the class Worker

= [nstance is initially empty d8
Puts the folder into heap space

Executes the method __init Iname
= Passes folder name to self ssn
= Passes other arguments in order _

= Executes the (assignment)
commands in initializer body

Returns the object (folder) name

Worker

'Erik’

1234

None

Aside: The Value None

e The boss field is a problem.

= boss refers to a Worker object

= Some workers have no boss
= Or maybe not assigned yet

« Solution: use value None
= None: Lack of (folder) name

= Will reassign the field later!

10/22/15

Classes

1d8

Iname
ssn

boss

Worker

'Erik’

1234

None

29

Making Arguments Optional

e We can assign default values to class Point3(object):

INnit.___ arguments

= Write as assignments to
parameters in definition

= Parameters with default values
are optional

« Examples:

= p = Point3() # (0,0,0)
p = Point3(1,2,3) #(1,2,3)
p = Point3(1,2) # (1,2,0)
P = Point3(y=3) # (0,3,0)
p = Point3(1,z=2) # (1,0,2)

10/22/15 Classes

Instances are points in 3d space
X: x coord [float]
y: y coord [float]
z: z coord [float]

def _init_ (self,x=0,y=0,z=0):
""Initializer: makes a new Point
Precondition: x,y,z are numbers
self.x = x

self.y =y

self.z=z

30

Making Arguments Optional

e We can assign default values to class Point3(object):
Init__arguments | Instances are points in 3d space

= Write as assignments to X x coord [float
parameters in definition y:'y coord [float]
= Parameters with default values z:z coord [float] ™
are optional def _init_ (self,x=0,y=0,z=0):
 Examples: Initializer: makes a new Point

" p=Point3d——#00 E) Precondition: x,y,z are numbers""
p = Pointd__ ASsigns inorder) self.x = x

P = Point3(1,2) | Use parameter name Eelf-y =Yy
D = Point3(y=3)_When out of Olrder elf.z =z
p = Point3(1,z=2 Can mix two
approaches
10/22/15 Classes 31

Making Arguments Optional

e We can assign default values to class Point3(object):
Init__arguments | " Instances are points in 3d space

= Write as assignments to X x coord [float
parameters in definition y:'y coord [float]
= Parameters with default values z:z coord [float] ™
are optional def _init_ (self,x=0,y=0,z=0):
 Examples: Initializer: makes a new Point

= p = Point3AQ # (0 0 0)
D= Point Assigns in order)
p = Point3(1,2) [Use parameter name pelf.

D = Point3(y=3)_When out of Olrder
p= P()int?-;,(]_,2:2}\/L Can mix two

approaches
10/22/15 Classes

	Classes
	Announcements
	Announcements
	Recall: Objects as Data in Folders
	Recall: Classes are Types for Objects
	Classes Have Folders Too
	Name Resolution for Objects
	The Class Definition
	The Class Definition
	Important!
	Recall: Constructors
	Instances and Attributes
	Instances and Attributes
	What gets Printed?
	Invariants
	The Class Specification
	The Class Specification
	Recall: Objects can have Methods
	Function Definition
	Method Definitions
	Method Calls
	Method Calls
	Don’t forget self!
	Don’t forget self!
	Initializing the Attributes of an Object (Folder)
	Special Method: __init__
	Special Method: __init__
	Evaluating a Constructor Expression
	Aside: The Value None
	Making Arguments Optional
	Making Arguments Optional
	Making Arguments Optional

