
More Recursion

Lecture 16

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements

• We can’t check off labs in professor office hours
• Reading for next week: Chapters 15 and 16

3/23/17 More Recursion 2

Announcements: A3

• Due: Thursday, March 30th, 11:59pm
• trigram_generation: “REQUIREMNET [sic]:

first, randomly pick a starting bigram "w1 w2”.”
• This means, “pick “w1 w2” randomly from the

sample text, just like you picked a unigram from
the text in bigram_generation.

3/23/17 More Recursion 3

Recall: Divide and Conquer

Goal: Solve problem P on a piece of data

3/23/17 More Recursion 4

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts

3. Combine the result

3/23/17 More Recursion 5

H e l l o !

! o l l e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts

3. Combine the result

3/23/17 More Recursion 6

H e l l o !

H e l l o !

left right ! o ll e H

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts

3. Combine the result

3/23/17 More Recursion 7

H e l l o !

left

right

H e l l o !

! o l l e

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts

3. Combine the result
return

3/23/17 More Recursion 8

H e l l o !

left

right

H e l l o !

! o l l e

A: left + right B: right + left C: left D: right
CORRECT

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts
left = reverse(s[0])
right = reverse(s[1:])

3. Combine the result
return right+left

3/23/17 More Recursion 9

H e l l o !

left

right

H e l l o !

! o l l e

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts
left = reverse(s[0])
right = reverse(s[1:])

3. Combine the result
return right+left

3/23/17 More Recursion 10

H e l l o !

A: if s == "":
return s

B: if len(s) <= 2:
return s

C: if len(s) <= 1:
return s

CORRECT

E: A, B, and C
would all work

D: Either A or C
would work

Note: This question was problematic as presented
in lecture, so it has been changed a bit.

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result
return right+left

3/23/17 More Recursion 11

H e l l o !

A: if s == "":
return s

B: if len(s) <= 2:
return s

C: if len(s) <= 1:
return s

D: Either A or C
would work

CORRECT

E: A, B, and C
would all work

Note: This question was problematic as presented
in lecture, so it has been changed a bit.

Example: Reversing a String

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = s[0]
right = reverse(s[1:])

3. Combine the result
return right+left

3/23/17 More Recursion 12

Base Case

Recursive
Case

Alternate Implementation

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = reverse(s[:len(s)-1])
right = reverse(s[len(s)-1])

3. Combine the result
return right+left

3/23/17 More Recursion 13

A: YES

B: NO

Does this work?

CORRECT

Alternate Implementation

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = reverse(s[:2])
right = reverse(s[2:])

3. Combine the result
return right+left

3/23/17 More Recursion 14

A: YES

B: NO

Does this work?

CORRECT

Alternate Implementation

def reverse(s):
"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
left = reverse(s[:2])
right = reverse(s[2:])

3. Combine the result
return right+left

3/23/17 More Recursion 15

H e l l o !

H e l l o !

H e

reverse(s[:2]) reverse(s[2:])

reverse(s[:2])

H e

reverse(s[2:])

reverse(s[:2]) reverse(s[2:])

Uh oh. Not
proceeding.

Alternate Implementation

def reverse(s):
"""Returns: reverse of s

Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s
if len(s) == 2:

return s[1] + s[0]
2. Break into two parts
left = reverse(s[:2])
right = reverse(s[2:])
3. Combine the result
return right+left

3/23/17 More Recursion 16

A: YES

B: NO

Does this work?

CORRECT

Alternate Implementation
def reverse(s):

"""Returns: reverse of s
Precondition: s a string"""
1. Handle small data
if len(s) <= 1:

return s

2. Break into two parts
half = len(s)/2
left = reverse(s[:half])
right = reverse(s[half:])

3. Combine the result
return right+left

3/23/17 More Recursion 17

A: YES

B: NO

Does this work?

CORRECT

Alternate Implementation

3/23/17 More Recursion 18

H e l l o !

H e l l o !

H e

reverse(s[:half]) reverse(s[half:])

reverse(s[:half]) reverse(s[half:])

l

reverse(s[:half]) reverse(s[half:])

e l

l o

reverse(s[:half]) reverse(s[half:])

!

reverse(s[:half]) reverse(s[half:])

o !

half = 3

half = 1 half = 1

half = 1 half = 1

Alternate Implementation

3/23/17 More Recursion 19

! o l l e H

l e H ! o l

H l

reverse(s[:half]) reverse(s[half:])

reverse(s[:half]) reverse(s[half:])

e

reverse(s[:half]) reverse(s[half:])

e l

l o

reverse(s[:half]) reverse(s[half:])

!

reverse(s[:half]) reverse(s[half:])

o !

• Example:

AMANAPLANACANALPANAMA

• Can we define recursively?

Example: Palindromes

3/23/17 20More Recursion

have to be the same

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
 its first and last characters are equal, and
 the rest of the characters form a palindrome

• Example:

AMANAPLANACANALPANAMA

• Implement: def ispalindrome(s):
"""Returns: True if s is a palindrome"""

has to be a palindrome

3/23/17 21More Recursion

Example: Palindromes

• String with ≥ 2 characters is a palindrome if:
 its first and last characters are equal, and
 the rest of the characters form a palindrome
def ispalindrome(s):

"""Returns: True if s is a palindrome"""
if len(s) < 2:

return True

ends = s[0] == s[-1]
middle = ispalindrome(s[1:-1])
return ends and middle

Recursive case

Base case

Recursive
Definition

3/23/17 22More Recursion

Recursion and Objects

• Class Person (person.py)
 Objects have 3 attributes
 name: String
 parent1: Person (or None)
 parent2: Person (or None)

• Represents the “family tree”
 Goes as far back as known
 Attributes parent1 and parent2

are None if not known

• Constructor: Person(name,p1,p2)
• Or Person(n) if no parents known

3/23/17 More Recursion 23

John Sr. Pamela

Eva Dan Heather

John Jr. Jane Robert Ellen

John III Alice

John IV

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
No parent1 or parent2
#(no ancestors)

2. Break into two parts
Has parent1 or parent2
Count ancestors of each one
(plus parent1, parent2 themselves)

3. Combine the result
3/23/17 More Recursion 24

John Sr. Pamela

Eva Dan Heather

John Jr. Jane Robert Ellen

John III Alice

John IV

11 ancestors

Recursion and Objects
def num_ancestors(p):

"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
if p.parent1 == None and p.parent2 == None:

return 0

2. Break into two parts
parent1s = 0
if p.parent1 != None:

parent1s = 1+num_ancestors(p.parent1s)
parent2s = 0
if p.parent2 != None:

parent2s = 1+num_ancestors(p.parent2s)

3. Combine the result
return parent1s+parent2s

3/23/17 More Recursion 25

John Sr. Pamela

Eva Dan Heather

John Jr. Jane Robert Ellen

John III Alice

John IV

11 ancestors

def num_ancestors(p):
"""Returns: num of known ancestors
Pre: p is a Person"""
1. Handle small data.
if p.parent1 == None and p.parent2 == None:

return 0

2. Break into two parts
parent1s = 0
if p.parent1 != None:

parent1s = 1+num_ancestors(p.parent1s)
parent2s = 0
if p.parent2 != None:

parent2s = 1+num_ancestors(p.parent2s)

3. Combine the result
return parent1s+parent2s

Recursion and Objects

3/23/17 More Recursion 26

We don’t actually
need this.
It is handled by the
conditionals in #2.

Challenge: All Ancestors

def all_ancestors(p):
"""Returns: list of all ancestors of p"""
1. Handle small data.
2. Break into parts.
3. Combine answer.

3/23/17 More Recursion 27

John Sr. Pamela

Eva Dan Heather

John Jr. Jane Robert Ellen

John III Alice

John IV

	More Recursion
	Announcements
	Announcements: A3
	Recall: Divide and Conquer
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Example: Reversing a String
	Alternate Implementation
	Alternate Implementation
	Alternate Implementation
	Alternate Implementation
	Alternate Implementation
	Alternate Implementation
	Alternate Implementation
	Example: Palindromes
	Example: Palindromes
	Example: Palindromes
	Recursion and Objects
	Recursion and Objects
	Recursion and Objects
	Recursion and Objects
	Challenge: All Ancestors

