
Recursion

Lecture 15

CS 1110: 
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]



Announcements: Prelim 1

• Graded and released
• Mean: 81 out of 104 (78%)
• Can pick up your exam in homework handback room
 Need Cornell ID
 Suggest printing your netid on paper

• Do not discuss exam with people taking makeups. 
• Regrade requests: we will send email to you
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Announcements: Assignment 3

• Released.
• Due: Thursday, March 30th, 11:59pm
• Recommendation: follow milestone deadlines.
• You MUST acknowledge help from others
 We run software analyzers to detect similar programs
 Have had some academic integrity violations so far

• Not a recursion assignment!
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Announcement: Lab 8

• Out.
• Not a recursion lab!
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Recursion

• Recursive Definition: 
A definition that is defined in terms of itself
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A Mathematical Example: Factorial

• Non-recursive definition:
n! = n × n-1 × … × 2 × 1  

= n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1
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for n ≥ 0 Recursive case
Base case

What happens if there is no base case?



Recursion

• Recursive Definition: 
A definition that is defined in terms of itself

• Recursive Function: 
A function that calls itself (directly or indirectly)
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Recursive Call Frames
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factorial 1

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3



Recursion
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3 Now what?
Each call is a new frame.



A:

What happens next?

10/13/16

Recursion 11

factorial 1, 3

n 3

factorial 1

n 2

factorial 1, 3, 1 

n 3 2

B:

factorial 1

n 3

C:

factorial 1, 3, 1 

n 3 2

D:

factorial 1

n 2

ERASE FRAMEfactorial 1, 3

n 3

CORRECT



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0

1



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

RETURN

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

6



Recursive Call Frames
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factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

RETURN

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

6



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?
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A: a8 = 21
B:  a8 = 29
C:  a8 = 34
D: None of these.



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?
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A: a8 = 21
B:  a8 = 29
C:  a8 = 34
D: None of these.

correct



Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?

• Recursive definition:
 an = an-1 + an-2 Recursive Case
 a0 = 1 Base Case
 a1 = 1 (another) Base Case
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Why did we need two base cases this time?



Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

10/13/16 Recursion 29

Recursive case

Base case(s)

Handles both base cases in one conditional.



Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))
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n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3



Recursion vs Iteration

• Recursion is provably equivalent to iteration
 Iteration includes for-loop and while-loop (later)
 Anything can do in one, can do in the other

• But some things are easier with recursion
 And some things are easier with iteration

• Will not teach you when to choose recursion
• We just want you to understand the technique
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Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/13/16 Recursion 32

data



Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data
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data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P



Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data
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data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!



Divide and Conquer Example

Count the number of 'e's in a string:
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p e nn e

Two 'e's

p e nn e

One 'e' One 'e'



Divide and Conquer Example

Count the number of 'e's in a string:
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p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's



Three Steps for Divide and Conquer

1. Decide what to do on “small” data
 Some data cannot be broken up
 Have to compute this answer directly

2. Decide how to break up your data
 Both “halves” should be smaller than whole
 Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
 Assume the smaller answers are correct
 Combining them should give bigger answer
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Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 38

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 39

p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0
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p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0
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p e nn e

0 2+

s[0] s[1:]



Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
# 1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

# 2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

# 3. Combine the result
return left+right
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Base Case

Recursive
Case



Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
 If it is the empty string, nothing to do

if s == '':
return s

 If it is a single character, delete it if a blank
if s == ' ':     # There is a space here

return '' # Empty string
else:

return s
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Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0])      # A string with no blanks
right = deblank(s[1:])   # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation
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Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/13/16 Recursion 45

Handle small data

Break up the data

Combine answers



Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right
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Base Case

Recursive
Case



Following the Recursion

a b cdeblank
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Following the Recursion

a b cdeblank
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deblank a b cdeblank

stops (base case)
adeblank

stops (base case)

b cdeblank

…



Following the Recursion

a b cdeblank

a b cdeblank
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Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank
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Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank
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Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank
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Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank
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Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb





Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb







Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb

cba







Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb

cba

cba









Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cbadeblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank









Tower of Hanoi

• Three towers: left, middle, and right
• n disks of unique sizes on left
• Goal: move all disks from left to right
• Cannot put a larger disk on top of a smaller disk
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4

left middle right

3
2
1



1 Disc

1. Move from left to right
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1

left middle right



1 Disc

1. Move from left to right
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1

left middle right



2 Discs

1. Move from left to middle
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left middle right
2
1



2 Discs
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left middle right
2 1

1. Move from left to middle
2. Move from left to right



2 Discs
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left middle right
21

1. Move from left to middle
2. Move from left to right
3. Move from middle to right



2 Discs
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left middle right
2
1

1. Move from left to middle
2. Move from left to right
3. Move from middle to right



3 Discs

1. Move from left to right
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left middle right
3
2
1



3 Discs

1. Move from left to right
2. Move from left to middle
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left middle right
3
2

1



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
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left middle right
3 2 1



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
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left middle right
3 2

1



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
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left middle right
32

1



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
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left middle right
321



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
7. Move from left to right
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left middle right
3
2

1



3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
7. Move from left to right
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left middle right
3
2
1



4

4 Discs: High-level Idea
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left middle right

3
2
1



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move top three disks 
from left to middle



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move top three disks 
from left to middle

• Move: largest disk from left
to right



4

4 Discs: High-level Idea
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left middle right

3
2
1

• Plan: move top three disks 
from left to middle

• Move: largest disk from left
to right

• Plan: move top three disks 
from middle to right



4

4 Discs: High-level Idea

10/13/16 Recursion 82

left middle right

3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle



4

4 Discs: High-level Idea
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left middle right

3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right



4

4 Discs: High-level Idea
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left middle right
3 2

1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle
• Move: disk 4 from left to 

right

Recursion



4

4 Discs: High-level Idea
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left middle right
3
2
1

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle
• Move: disk 4 from left to 

right
• Plan: move disks 1, 2, and 3 

from middle to right



4 Discs: High-level Idea
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left middle

• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle
• Move: disk 4 from left to 

right
• Plan: move disks 1, 2, and 3 

from middle to right

4

right

3
2
1



Observation: Plans within a Plan
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• Plan: move disks 1, 2, and 3 
from left to middle
 Plan: move disks 1 and 2 from 

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from 

right to middle
• Move: disk 4 from left to 

right
• Plan: move disks 1, 2, and 3 

from middle to right

High-level 
plan

Low-level 
plan



General Pattern

To move n disks from source to target:

(source, other, and target can be any permutation of left, middle and right)

1. Plan: move disks 1, …, n-1 from source to other
2. Move: disk n to from source to target
3. Plan: move disks 1, …, n-1 from other to target
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disks 1, …, n-1

disk n

source other targetother disks?
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