
Recursion

Lecture 15

CS 1110:
Introduction to Computing Using Python

[Andersen, Gries, Lee, Marschner, Van Loan, White]

Announcements: Prelim 1

• Graded and released
• Mean: 81 out of 104 (78%)
• Can pick up your exam in homework handback room
 Need Cornell ID
 Suggest printing your netid on paper

• Do not discuss exam with people taking makeups.
• Regrade requests: we will send email to you

10/13/16 Recursion 2

Announcements: Assignment 3

• Released.
• Due: Thursday, March 30th, 11:59pm
• Recommendation: follow milestone deadlines.
• You MUST acknowledge help from others
 We run software analyzers to detect similar programs
 Have had some academic integrity violations so far

• Not a recursion assignment!

10/13/16 Recursion 3

Announcement: Lab 8

• Out.
• Not a recursion lab!

10/13/16 Recursion 4

Recursion

• Recursive Definition:
A definition that is defined in terms of itself

10/13/16 Recursion 5

A Mathematical Example: Factorial

• Non-recursive definition:
n! = n × n-1 × … × 2 × 1

= n (n-1 × … × 2 × 1)

• Recursive definition:
n! = n (n-1)!
0! = 1

10/13/16 Recursion 6

for n ≥ 0 Recursive case
Base case

What happens if there is no base case?

Recursion

• Recursive Definition:
A definition that is defined in terms of itself

• Recursive Function:
A function that calls itself (directly or indirectly)

10/13/16 Recursion 7

Recursive Call Frames

10/13/16 Recursion 8

factorial 1

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3

Recursive Call Frames

10/13/16 Recursion 9

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3

Recursion

10/13/16 Recursion 10

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

1
2

3 Now what?
Each call is a new frame.

A:

What happens next?

10/13/16

Recursion 11

factorial 1, 3

n 3

factorial 1

n 2

factorial 1, 3, 1

n 3 2

B:

factorial 1

n 3

C:

factorial 1, 3, 1

n 3 2

D:

factorial 1

n 2

ERASE FRAMEfactorial 1, 3

n 3

CORRECT

Recursive Call Frames

10/13/16 Recursion 12

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1

Recursive Call Frames

10/13/16 Recursion 13

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

Recursive Call Frames

10/13/16 Recursion 14

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1

Recursive Call Frames

10/13/16 Recursion 15

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

Recursive Call Frames

10/13/16 Recursion 16

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0

1

Recursive Call Frames

10/13/16 Recursion 17

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0

1, 2

Recursive Call Frames

10/13/16 Recursion 18

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 19

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 20

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 21

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2
1
2

3

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 22

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 23

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

Recursive Call Frames

10/13/16 Recursion 24

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

RETURN

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

6

Recursive Call Frames

10/13/16 Recursion 25

factorial 1, 3

n 3

def factorial(n):
"""Returns: factorial of n.
Pre: n ≥ 0 an int"""
if n == 0:

return 1

return n*factorial(n-1)

Call: factorial(3)

RETURN

factorial

n 2 RETURN
1
2

3

2

1, 3

factorial

n 1 RETURN 1

1, 3

factorial

n 0 RETURN 1

1, 2

6

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?

10/13/16 Recursion 26

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?

10/13/16 Recursion 27

A: a8 = 21
B: a8 = 29
C: a8 = 34
D: None of these.

correct

Example: Fibonnaci Sequence

• Sequence of numbers: 1, 1, 2, 3, 5, 8, 13, ...
a0 a1 a2 a3 a4 a5 a6

 Get the next number by adding previous two
 What is a8?

• Recursive definition:
 an = an-1 + an-2 Recursive Case
 a0 = 1 Base Case
 a1 = 1 (another) Base Case

10/13/16 Recursion 28

Why did we need two base cases this time?

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

10/13/16 Recursion 29

Recursive case

Base case(s)

Handles both base cases in one conditional.

Fibonacci as a Recursive Function

def fibonacci(n):
"""Returns: Fibonacci no. an

Precondition: n ≥ 0 an int"""
if n <= 1:

return 1

return (fibonacci(n-1)+
fibonacci(n-2))

10/13/16 Recursion 30

n

fibonacci 3

5

n

fibonacci 1

4 n

fibonacci 1

3

Recursion vs Iteration

• Recursion is provably equivalent to iteration
 Iteration includes for-loop and while-loop (later)
 Anything can do in one, can do in the other

• But some things are easier with recursion
 And some things are easier with iteration

• Will not teach you when to choose recursion
• We just want you to understand the technique

10/13/16 Recursion 31

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/13/16 Recursion 32

data

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/13/16 Recursion 33

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Recursion is best for Divide and Conquer

Goal: Solve problem P on a piece of data

10/13/16 Recursion 34

data
Idea: Split data into two parts and solve problem

data 1 data 2

Solve Problem P Solve Problem P

Combine Answer!

Divide and Conquer Example

Count the number of 'e's in a string:

10/13/16 Recursion 35

p e nn e

Two 'e's

p e nn e

One 'e' One 'e'

Divide and Conquer Example

Count the number of 'e's in a string:

10/13/16 Recursion 36

p e nn e

Two 'e's

p e nn e

Zero 'e's Two 'e's

Three Steps for Divide and Conquer

1. Decide what to do on “small” data
 Some data cannot be broken up
 Have to compute this answer directly

2. Decide how to break up your data
 Both “halves” should be smaller than whole
 Often no wrong way to do this (next lecture)

3. Decide how to combine your answers
 Assume the smaller answers are correct
 Combining them should give bigger answer

10/13/16 Recursion 37

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 38

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 39

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 40

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

“Short-cut” for
if s[0] == 'e’:

return 1
else:

return 0

10/13/16 Recursion 41

p e nn e

0 2+

s[0] s[1:]

Divide and Conquer Example
def num_es(s):

"""Returns: # of 'e's in s"""
1. Handle small data
if s == '':

return 0
elif len(s) == 1:

return 1 if s[0] == 'e' else 0

2. Break into two parts
left = num_es(s[0])
right = num_es(s[1:])

3. Combine the result
return left+right

10/13/16 Recursion 42

Base Case

Recursive
Case

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

1. Decide what to do on “small” data
 If it is the empty string, nothing to do

if s == '':
return s

 If it is a single character, delete it if a blank
if s == ' ': # There is a space here

return '' # Empty string
else:

return s
10/13/16 Recursion 43

Exercise: Remove Blanks from a String

def deblank(s):
"""Returns: s but with its blanks removed"""

2. Decide how to break it up
left = deblank(s[0]) # A string with no blanks
right = deblank(s[1:]) # A string with no blanks

3. Decide how to combine the answer
return left+right # String concatenation

10/13/16 Recursion 44

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/13/16 Recursion 45

Handle small data

Break up the data

Combine answers

Putting it All Together

def deblank(s):
"""Returns: s w/o blanks"""
if s == '':

return s
elif len(s) == 1:

return '' if s[0] == ' ' else s

left = deblank(s[0])
right = deblank(s[1:])

return left+right

10/13/16 Recursion 46

Base Case

Recursive
Case

Following the Recursion

a b cdeblank

10/13/16 Recursion 47

Following the Recursion

a b cdeblank

10/13/16 Recursion 48

deblank a b cdeblank

stops (base case)
adeblank

stops (base case)

b cdeblank

…

Following the Recursion

a b cdeblank

a b cdeblank

10/13/16 Recursion 49

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

10/13/16 Recursion 50

Following the Recursion

a b c

a

deblank

a b cdeblank

b cdeblank

b cdeblank

10/13/16 Recursion 51

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

10/13/16 Recursion 52

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

10/13/16 Recursion 53

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb



Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb





Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb

cba





Following the Recursion

a b c

a

b

deblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank

c c

c

cb

cb

cba

cba







Following the Recursion

a b c

a

b

c c

c

cb

cb

cba

cba

cbadeblank

a b cdeblank

b cdeblank

b cdeblank

cdeblank

cdeblank







Tower of Hanoi

• Three towers: left, middle, and right
• n disks of unique sizes on left
• Goal: move all disks from left to right
• Cannot put a larger disk on top of a smaller disk

10/13/16 Recursion 62

4

left middle right

3
2
1

1 Disc

1. Move from left to right

10/13/16 Recursion 63

1

left middle right

1 Disc

1. Move from left to right

10/13/16 Recursion 64

1

left middle right

2 Discs

1. Move from left to middle

10/13/16 Recursion 65

left middle right
2
1

2 Discs

10/13/16 Recursion 66

left middle right
2 1

1. Move from left to middle
2. Move from left to right

2 Discs

10/13/16 Recursion 67

left middle right
21

1. Move from left to middle
2. Move from left to right
3. Move from middle to right

2 Discs

10/13/16 Recursion 68

left middle right
2
1

1. Move from left to middle
2. Move from left to right
3. Move from middle to right

3 Discs

1. Move from left to right

10/13/16 Recursion 70

left middle right
3
2
1

3 Discs

1. Move from left to right
2. Move from left to middle

10/13/16 Recursion 71

left middle right
3
2

1

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle

10/13/16 Recursion 72

left middle right
3 2 1

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right

10/13/16 Recursion 73

left middle right
3 2

1

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left

10/13/16 Recursion 74

left middle right
32

1

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right

10/13/16 Recursion 75

left middle right
321

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
7. Move from left to right

10/13/16 Recursion 76

left middle right
3
2

1

3 Discs

1. Move from left to right
2. Move from left to middle
3. Move from right to middle
4. Move from left to right
5. Move from middle to left
6. Move from middle to right
7. Move from left to right

10/13/16 Recursion 77

left middle right
3
2
1

4

4 Discs: High-level Idea

10/13/16 Recursion 78

left middle right

3
2
1

4

4 Discs: High-level Idea

10/13/16 Recursion 79

left middle right
3
2
1

• Plan: move top three disks
from left to middle

4

4 Discs: High-level Idea

10/13/16 Recursion 80

left middle right
3
2
1

• Plan: move top three disks
from left to middle

• Move: largest disk from left
to right

4

4 Discs: High-level Idea

10/13/16 Recursion 81

left middle right

3
2
1

• Plan: move top three disks
from left to middle

• Move: largest disk from left
to right

• Plan: move top three disks
from middle to right

4

4 Discs: High-level Idea

10/13/16 Recursion 82

left middle right

3
2
1

• Plan: move disks 1, 2, and 3
from left to middle

4

4 Discs: High-level Idea

10/13/16 Recursion 83

left middle right

3
2
1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right

4

4 Discs: High-level Idea

10/13/16 Recursion 84

left middle right
3 2

1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right

4

4 Discs: High-level Idea

10/13/16 Recursion 85

left middle right
3
2
1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle

4

4 Discs: High-level Idea

10/13/16 Recursion 86

left middle right
3
2
1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle

4

4 Discs: High-level Idea

10/13/16 87

left middle right
3
2
1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle
• Move: disk 4 from left to

right

Recursion

4

4 Discs: High-level Idea

10/13/16 88

left middle right
3
2
1

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle
• Move: disk 4 from left to

right
• Plan: move disks 1, 2, and 3

from middle to right

4 Discs: High-level Idea

10/13/16 89

left middle

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle
• Move: disk 4 from left to

right
• Plan: move disks 1, 2, and 3

from middle to right

4

right

3
2
1

Observation: Plans within a Plan

10/13/16 90

• Plan: move disks 1, 2, and 3
from left to middle
 Plan: move disks 1 and 2 from

left to right
 Move: disk 3 from left to right
 Plan: move disks 1 and 2 from

right to middle
• Move: disk 4 from left to

right
• Plan: move disks 1, 2, and 3

from middle to right

High-level
plan

Low-level
plan

General Pattern

To move n disks from source to target:

(source, other, and target can be any permutation of left, middle and right)

1. Plan: move disks 1, …, n-1 from source to other
2. Move: disk n to from source to target
3. Plan: move disks 1, …, n-1 from other to target

10/13/16 Recursion 91

4
3
2
1

disks 1, …, n-1

disk n

source other targetother disks?

	Recursion
	Announcements: Prelim 1
	Announcements: Assignment 3
	Announcement: Lab 8
	Recursion
	A Mathematical Example: Factorial
	Recursion
	Recursive Call Frames
	Recursive Call Frames
	Recursion
	What happens next?
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Recursive Call Frames
	Example: Fibonnaci Sequence
	Example: Fibonnaci Sequence
	Example: Fibonnaci Sequence
	Fibonacci as a Recursive Function
	Fibonacci as a Recursive Function
	Recursion vs Iteration
	Recursion is best for Divide and Conquer
	Recursion is best for Divide and Conquer
	Recursion is best for Divide and Conquer
	Divide and Conquer Example
	Divide and Conquer Example
	Three Steps for Divide and Conquer
	Divide and Conquer Example
	Divide and Conquer Example
	Divide and Conquer Example
	Divide and Conquer Example
	Divide and Conquer Example
	Exercise: Remove Blanks from a String
	Exercise: Remove Blanks from a String
	Putting it All Together
	Putting it All Together
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Following the Recursion
	Tower of Hanoi
	1 Disc
	1 Disc
	2 Discs
	2 Discs
	2 Discs
	2 Discs
	3 Discs
	3 Discs
	3 Discs
	3 Discs
	3 Discs
	3 Discs
	3 Discs
	3 Discs
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	4 Discs: High-level Idea
	Observation: Plans within a Plan
	General Pattern

